
Q&A: JDJ Asks . . . Microsoft on .NET
Interview with Microsoft – what’s going on in Redmond 12

Java-Based Web Services: Good News Steven Berkowitz
for the Java Universe Java isn’t going away 26

Thread Management: Thread Pooling Vishal Goenka
in Java Applications What are the risks involved? 34

Feature: Managing Java Source Code Tom Laramee

Dependencies for SCM The tip of the iceberg 40

Java Cryptography: Unlimited Encryption Bill Ray
on Limited Devices Security on your mobile phone 50

Feature: MIDP 2.0: Mobile Computing Arrives Roger Ritter
Create fully functional mobile data systems 54

Product Review: JSuite 6.0 Paul Frey
by Infragistics – a comprehensive suite of visual components 62

Product Review: Adaptive Server Breck Carter
Anywhere Version 8 by iAnywhere Solutions 66

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL JANUARY 31, 2003

TM

Java COM

ORACLE DELIVERS NEW RELEASE: ORACLE9i JDEVELOPER P.76

From the Editor
Alan Williamson pg. 7

Guest Editorial
Joseph Ottinger pg.9

pg. 79

pg.100Java Dudes Comic Strip

Spotlight on Open Source

JDJ’s Java & Linux Focus Issue
on Newsstands in February!

Java COM

2 NOVEMBER 2002

sonic
www.sonic.com

3NOVEMBER 2002

Java COM

zero g
www.zerog.com

apple
www.apple.com

Java COM

4 NOVEMBER 2002

5NOVEMBER 2002

Java COM

apple
www.apple.com

Java COM

6 NOVEMBER 2002

Java COM

motorola
www.motorola.com

7NOVEMBER 2002

Java COM

AUTHOR BIO
When not answering your e-mails and working on the next issue of JDJ, Alan heads up a small team dubbed the “Thunderbirds of the Java

industry,” providing on- and offsite rescue for Java projects in trouble. For more information visit www.javaSOS.com.
You can also read his blog: http://alan.blog-city.com.

F R O M T H E E D I T O RD IF

Design Pattern Snobs

alan@sys-con.com

ALAN WILLIAMSON EDITOR-IN-CHIEF

Have you noticed lately how the word
pattern seems to be creeping into
general musings and dialogue more

and more? Like name-dropping, it’s con-
sciously woven into the fabric of the conver-
sation as a way to assert a certain level of
understanding and credibility. Mention the
latest design pattern and suddenly your
peers will see you as a genius of software
engineering, “…you see I have employed the
Decorator pattern for this particular class…”
While you’re fighting the urge to give them a
good slap, allow me to let you into the big
secret. There is none!

When perusing various article submis-
sions for our beloved magazine, I am con-
stantly surprised to see how laden down with
buzzwords the proposals are, as if vainly
attempting to show off their superior knowl-
edge by dazzling our editors with fancy
acronyms and big words. I had an exchange
with one potential author, who I would class
as the typical design-pattern snob. I’m sure
you’ve come across them at some point.
They’re the ones who love using this termi-
nology, and chastise anyone who doesn’t
understand or uses an unofficial pattern.

To that end I had to do something – I had
reached the saturation point. Although I am
a young fellow, I have to hold my hand up
and say I was educated in an era before
design patterns were even invented. Yes, it’s
true, such a time did exist. In my day they
were called data structures. Now admittedly,
this doesn’t sound half as sexy as design pat-
terns, but they were the exact same thing
without today’s buzzwords.

To all those developers who are getting
frustrated with the constant use of the word
patterns, and who feel they may be missing

out on some great new movement, I say to
you: don’t panic. They’re just repackaging the
stuff you’ve been doing for years in a format
that can be openly discussed. For example,
the class you designed that can have only one
instance created – in the pattern world, this
would be known as a Singleton class. Easy,
eh? Not shrouded in as much mystery now. A
design pattern does not specify any code, nor
does it even specify a template, merely a way
of doing something. A pattern!

The next time you get into a discussion
on design patterns, be it at an interview or
over the water cooler, stay calm, and merely
ask the offender to explain what exactly he or
she means. I would guess that 9 times out of
10 you’ve used it many times and didn’t even
realize you were a design pattern follower!

• • •
Last month I highlighted how delighted I

was with a great client-side technology,
www.thinlet.com, and how it was a wonder-
ful example of how Java, in the right hands,
can really rock. This month I have found
another. It’s not a tool for Java developers,
however; it’s more for the masses. Check out
www.freedomaudio.com, a lightweight Java
audio tool for listening to streaming MP3
and Ogg files inside your browser. It works
very well, and Kendal, the man behind it, has
put a lot of effort into writing his own
libraries to ensure that they’re small, as
opposed to using some of the bloated official
Java APIs. Yet another shining example in
which small can be beautiful, and creativity
and engineering can prove that Java is still
the only one to win against Flash and other
plug-in technologies.

Keep up the good work, people. We are
proud of you. Your community needs you.

I N T E R N A T I O N A L A D V I S O R Y B O A R D
• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),

• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),
• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software

Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
EXECUTIVE EDITOR: NANCY VALENTINE

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON R. BRIGGS
J2SE EDITOR: JASON BELL

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
PRODUCTION CONSULTANT: JIM MORGAN
ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI

ASSOCIATE EDITORS: JAMIE MATUSOW
GAIL SCHULTZ
JEAN CASSIDY

ASSISTANT EDITOR: JENNIFER STILLEY
ONLINE EDITOR: LIN GOETZ

TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, JASON BELL, STEVEN BERKOWITZ, JASON R. BRIGGS, BRECK

CARTER, PAUL FREY, JEREMY GEELAN, JOEY GIBSON, ENRIQUE PÉREZ GIL, VISHAL
GOENKA, TOM LARAMEE, JOSEPH OTTINGER, BILLY PALMIERI, BILL RAY, ROGER

RITTER, AJIT SAGAR, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

Java COM

J2SE
H

om
e

J2E
E

J2M
E

Java COM

8 NOVEMBER 2002

joeo@enigmastation.com

PRESIDENT AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

COO/CFO
MARK HARABEDIAN mark@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com
LEAH HITTMAN leah@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

NANCY VALENTINE nancy@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com
JEAN CASSIDY jean@sys-con.com

ASSISTANT EDITOR
JENNIFER STILLEY jennifier@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
PRODUCTION CONSULTANT

JIM MORGAN jim@sys-con.com
LEAD DESIGNER

LOUIS F. CUFFARI louis@sys-con.com
ART DIRECTOR

ALEX BOTERO alex@sys-con.com
ASSOCIATE ART DIRECTOR

RICHARD SILVERBERG richards@sys-con.com
ASSISTANT ART DIRECTOR

TAMI BEATTY tami@sys-con.com

W E B S E R V I C E S
VICE PRESIDENT, INFORMATION SYSTEMS

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com

A C C O U N T I N G
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE/COLLECTIONS SUPERVISOR
KERRI VON ACHEN kerri@sys-con.com

ACCOUNTS PAYABLE
JOAN LAROSE joan@sys-con.com

ACCOUNTING CLERK
BETTY WHITE betty@sys-con.com

S Y S - C O N E V E N T S
VICE PRESIDENT, SYS-CON EVENTS

GRISHA DAVIDA grisha@sys-con.com
CONFERENCE MANAGER

MICHAEL LYNCH mike@sys-con.com
SALES EXECUTIVES, EXHIBITS

MICHAEL PESICK michael@sys-con.com
RICHARD ANDERSON richard@sys-con.com

C U S T O M E R R E L A T I O N S
CUSTOMER SERVICE REPRESENTATIVE

MARGIE DOWNS margie@sys-con.com
JDJ STORE MANAGER

RACHEL MCGOURAN rachel@sys-con.com

AUTHOR BIO
Joseph Ottinger is a consultant with Fusion Alliance (http://fusionalliance.com) in Indianapolis, and is one of the administrators of and con-
tributors to the OpenSymphony project (www.opensymphony.com).

G U E S T E D I T O R I A L

Sun Is Losing Its Way WRITTEN BY JOSEPH OTTINGER

I’ve been actively involved with Java
development in one way or another
since 1996, including working with some

of the original issues of the servlet specifica-
tion, the early adaptation of the EJB spec,
and migration to JSP not long after it
became an official part of the J2EE spec. I
remember when Rick Ross first sent his e-
mails for Javalobby on Usenet; I remember
playing with the specs to discover if the grail
was to be found in them as promised.

It hasn’t come through for me. That’s
okay, because technology is and will always
be a moving target; I’ve refined what the
grail is as I’ve come near it many times, and
I will continue to do so as long as my career
is not completely stagnant. What worries
me, though, is the thought that the grail is
actually moving further away as time goes
by, instead of staying just out of reach, like
a carrot for a hungry dray horse.

The Java Community Process was sup-
posed to give relevant people in the Java
Community a chance to influence the
specifications in positive ways. It’s guaran-
teed to be an arduous process, and it has
lived up to its billing. What Sun needed to
do was guide the expert groups down a
path laden with thorns to determine not
only what was best, but how to get what
was best implemented. What it did was let
the expert groups descend into a morass
where those who shouted most were heard.

The Enterprise JavaBean specification
is a good example of this. EJB 1.0 fell criti-
cally short of being easily deployable; EJB
1.1 added some great features, and 2.0,
while fulfilling some of the void left by the
1.1 specification, has sadly started to inval-
idate EJB’s promise. The best things about
EJB remain the same; the new additions,
such as local interfaces, simply add com-
plexity where it’s not needed. And that’s
where Sun’s community process has failed.
Nearly every container already had an
implementation of local interfaces before
they were added to the spec; they were
added as a sop to a few major players who
simply hadn’t kept up with the “smaller”
containers. Obviously, it was possible to do
without a lot of overhead, yet Sun felt it was
all right to make not only every container
but every EJB coder work with extra inter-
faces as well as a separate use model. This

is the JCP breaking down; instead of mak-
ing life simpler, it made it harder and didn’t
actually finalize the most crucial areas left
in the entity bean section of the specifica-
tion, such as finalizing the managed rela-
tionships.

The 1.4 API’s logging model is another
example of this: taken nearly verbatim
from Log4J, it’s a floodgate-based model,
where each category can be set up individ-
ually, and as messages rise above a deploy-
er-specified “message level,” they become
visible in the output stream. This is nice,
certainly nicer than System.out.println()
strewn throughout code, but the introduc-
tion into the 1.4 API would have been the
perfect time to present something more
powerful by default, such as a bitmasked
logger, where you would be able to say you
wanted to see all “startup,” “info,” and
“fatal” events in a given category, and in
another you wanted to see only “startup”
and “shutdown” events. Instead, Sun con-
tinued to take the easy way out, repackag-
ing Log4J according to various contributors
in the expert group and letting it go.

I would have liked to see Sun actually
leverage the expertise of the Java commu-
nity – it could spend time developing the
language and application interfaces while
accepting the contributions of program-
mers who could improve the core imple-
mentations. That would yield massive ben-
efits: a best-of-breed would appear in the
language API and application developers
would feel empowered and more invested
in Java. A best-of-breed would probably
have prevented things such as local inter-
faces (which actually do have a beneficial
performance impact, just not enough of
one to justify their cost), and allowed a
more open discussion of other relevant
APIs.

As Sun continues to allow the JCP to run
wild, contributing APIs that don’t actually
improve the usage patterns of the lan-
guage, Java will grow more and more irrele-
vant, until the weight of the poor APIs
drags it into oblivion. Sun needs to listen to
its own best practices groups, and elimi-
nate the cruft introduced by users who very
competently implement things that run
counter to the mindset that made Java the
useful tool it is today.

J2
SE

H
om

e
J2

E
E

J2
M

E

9NOVEMBER 2002

bea
www.bea.com

Java COM

10 NOVEMBER 2002

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor of XML-Journal. He is the director of engineering at Controlling Factor,

a leading B2B software solutions firm based in Dallas, and is well versed in Java,Web, and XML technologies.

ajit@sys-con.com

When I first started program-
ming, it was with a small
company. Life was simple. I

understood all the requirements, and
knew all the aspects of the application and
how to pull everything together. If I was
working with a team of programmers, the
projects were small enough that the team
knew each other’s code thoroughly. Mi
code es su code. Software engineering was
easy to follow; code and design walk-
throughs involved everyone, and, given
time, any person could pretty much han-
dle the whole project on his or her own.

I moved on in my career and, in the last
decade, as technology started to grow at a
phenomenal rate, the process of “pulling it
all together” became far more complex
and had a lot more nuances than a single
person or team could handle. Distributed
computing, by its very definition, requires
distributed components to work together
as an integrated application. This intro-
duces the need to independently test and
deploy the components, to provide an
appropriate level of abstraction, and then
to test the application as a whole.

The J2EE platform’s purpose in life is to
facilitate the development and integration
of distributed components. Sun provides
the APIs and the framework. However, the
actual tools for testing and deploying an
application are provided by IDE tools ven-
dors. Fortunately, J2EE IDEs have come a
long way in offering features that support
the design and testing as well as deploy-
ment of J2EE-based applications.

As distributed programming platforms
have evolved over the last decade, so too
have the design methodologies. About
four years ago, you got the J2EE APIs
(which were not yet “J2EE”) from Sun, the
J2EE implementation and container for
distributed components from your app
server vendor of choice, and the develop-

ment environment from your favorite IDE.
To coordinate between development, test-
ing, and deployment, you had to manually
make these different environments work
together.

Over the past few years, several things
have happened to make the development
of J2EE applications both easier and hard-
er. It’s harder because the complexity of
APIs has grown to an extent that the devel-
opers can concentrate on only a part of the
big picture. The architect who designs the
solution has the big picture in mind, but
had to leave the details of subsystem
design, testing, and deployment to the
individual subsystem designers.
Development of J2EE-based applications
has become easier because the tools have
become more integrated and alternative,
less heavyweight methodologies have
become very popular.

eXtreme programming has gained a lot
of popularity in the J2EE universe overall
because it offers a practical and efficient
way to manage large or small projects
without getting bogged down in an overly
complex design and an unmaintainable
development cycle. And XP has become
very popular in the Java environment
because it addresses the needs of distrib-
uted J2EE application development in a
palatable way. IDE and app server ven-
dors have added support for J2EE tools
using XP as well as support that enables
teams to develop software based on XP
principles. The leading app server and
IDE vendors typically include support for
tools, such as Ant for building and deploy-
ing software and JUnit for testing, and
editing support for refactoring. The XP
principles apply well to a distributed
development environment by reinforcing
simple design and continuous integra-
tion, refactoring coding standards, and
code sharing through pair programming.

J 2 E E E D I T O R I A LO R J 2 E E I N D E XX

AJIT SAGAR J2EE EDITOR 10

26

12

18

eXtreme J2EE
When I first started

programming, it was with a
small company. Life was simple.

I understood all the require-
ments, and knew all the aspects

of the application and how to
pull everything together.

by Ajit Sagar

Interview with Microsoft
JDJ asks

...Microsoft
on .NET

A (Brief) Introduction
to Ant

If you haven’t heard of
Ant before, it’s an extremely
useful Java build tool, from
the Apache Jakarta group,
that makes building Java

projects a breeze. This article
provides a short introduction
to Ant so you can start using

it in your own projects.
by Joey Gibson

Good News for the Java
Universe

You may have to
dig beneath the hype a little,

but at any gathering of 40
Java vendors there’s bound

to be some treasure buried in
there somewhere. It’s just

waiting for you to find it.
by Steven Berkowitz

J2
SE

H
om

e
J2

E
E

J2
M

E

eXtreme J2EE

Java COM

While these principles apply well to all
projects, the supporting Java tools make
the application of these principles prag-
matic.

It would be nice to have a tool that
enforces pair programming. Maybe that’s
coming soon. Speaking of eXtreme J2EE,
there are a couple of good books I’d like to
recommend on this subject: Java Tools for
eXtreme Programming by Richard High-
tower and Nicholas Lesiecki (Wiley), and
Java Development with Ant by Erik
Hatcher and Steve Loughran (Manning
Publications).

11NOVEMBER 2002

Java COM

ibm
www.ibm.com

Java COM

12 NOVEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Microsoft has been making
major plays in the industry regarding Java with
their .NET strategies, and a lot of disinformation
has been floating around. Microsoft granted JDJ
access to ask questions, offering you, the reader,
the opportunity to find out, straight from the
horse’s mouth, what’s going on in Redmond.

Concerned readers of JDJ posed the follow-
ing questions.

<rob diana>:What are the core differ-
ences in the .NET J# implementation
and normal Java implementations?
<microsoft>: Visual J# .NET is a tool for
Java developers to use in building appli-
cations and services on the .NET
Framework. It integrates the Java-lan-
guage syntax into the Visual Studio
.NET shell, and enables it to integrate
with the 20-plus programming lan-
guages supported by the .NET
Framework. It’s for Java developers
who want to build XML Web services or
have an investment in Visual J++. First,
we are implementing sufficient function-
ality to ensure that our existing Visual
J++ customers will be able to take
advantage of the .NET Framework with
the smallest possible disruption. In
future releases, we’ll be examining
development and usage patterns among
our developers and offer additional sup-
port as appropriate.

<mica cooper>: I use Java almost exclu-
sively. Quite often the best solution
for a Windows customer is to use
Microsoft tools such as the one that
makes a Java class an NT service.
Are there any plans to update these
tools? Are they in .NET or not? If they
are there, do I have to use .NET Java
or can I use standard Java?
<microsoft>: The Microsoft SDK for Java
provides the com.ms.service name-
space, the Service base class, and the
Jntsvc command-line tool. Developers
can author Windows Services by
extending the Service base class and
using the jntsync tool to install the
Service. The .NET Framework provides
equivalent functionality via the
System.ServiceProcess.Service class
and InstallUtil command-line tool. As
with any other language that supports
the CLR, Visual J# .NET can be used to
build a Windows Service that extends
this new base class.

<richard hart>: What is your
respect/intentions for the Java lan-
guage? You don’t seem to view it as
a standard, otherwise we wouldn’t

have the IE/Netscape issue with run-
ning applets. Are you looking to sup-
port Java 1.4 ever? Or will you be
taking Java off into a different direc-
tion completely?
<microsoft>: Our intention is to enable
Java-language developers to take
advantage of the Microsoft .NET
Framework. If you’re a developer who is
comfortable using the Java-language
syntax and wish to start building third-
generation applications on a true XML
Web services platform, then Visual J#
.NET will appeal to you.

<concerned java developer>: Can you tell
us the main factor that prevented you
from working with Sun all those
years ago? Why are you stuck with
1.1.3 of the specification?
<microsoft>: At its core, our primary
issue with Sun was whether Microsoft
could innovate in Java. We wanted to
make it possible for developers to build
great Windows applications using the
Java language and to leverage the full
power, functionality, and integration of
the Windows platform while also provid-
ing support for developers who chose to
write cross-platform Java applications.
Sun sued us to prevent that innovation.
The settlement we reached with Sun
only allows us to provide a JDK 1.1.4-
era virtual machine, and our right to do
that effectively expires in January 2004
when our ability to repair security vulner-
abilities ends.

<jay miller>: What has happened to
J#? It was slated for Q2 release, and
then Microsoft got real quiet about it.
<microsoft>: Visual J# .NET was
announced for public availability on July
1, 2002, at Tech-Ed Barcelona. You can
download the released product from
http://msdn.microsoft.com/vjsharp. We’re
very happy with the level of interest in
Visual J# .NET and are already planning
for future releases.

<rupal majmudar>: Microsoft supports
J# on the desktop with the VJ++ add-
on to Visual Studio. Do they plan to
support J# on Compact.NET/WinCE
.NET platforms as well? If yes, when?
If not, will they be saying so officially,
or will they leave us guessing?
<microsoft>: Currently the .NET
Compact Framework doesn’t have
IDE/compiler support for J#. We are
working closely with our customers and
partners to determine the correct offer-
ing for Visual J# .NET in this space.
We’ll keep you informed.

<james ashton>: Does Microsoft have
any plans to upgrade the Java sup-

port in J# to anything approaching
what we’re all actually using
(1.3.x/1.4.x)? If not, would there ever
be a mechanism to allow a developer
to specify a JDK to use as a base?
<microsoft>: We’re not building an imple-
mentation of Sun’s proprietary Java plat-
form. Our goal is to provide a develop-
ment tool for building applications and
services on the .NET Framework using
the Java-language syntax. So develop-
ers who are interested in writing applica-
tions in Java for the .NET Framework
will find a familiar syntax structure and
core set of runtime libraries.

<franklin nwankwo>: Why is Microsoft
hesitant to incorporate adequate sup-
port for Java in the .NET Framework?
Do they realize that Java developers
will not JUMP that easily? What is
needed is support for pure unadulter-
ated Java in .NET as all other
attempts at J# JUMP, et al, are
doomed to spectacular failure.
<microsoft>: We feel we have imple-
mented a better platform for creating
XML Web services – the .NET
Framework. Once developers realize
there’s something out there superior to
Sun’s proprietary Java platform, as
many have already, we feel that they will
want to begin development on the .NET
Framework. The JUMP strategy is
designed to help move developer skills
and existing applications to the .NET
Framework.

<ken barber>: Would it be fair or unfair
to say that due to choices made by
MS when designing the Win32 archi-
tecture long ago, Windows is built on
a very dangerous foundation
(ActiveX, for example) that can’t be
made secure, and which is likely to
render .NET equally insecure?
<microsoft>: No, it would not be fair to
say that because it is fundamentally
incorrect. We would recommend that
you look at the many articles on the
robust security features of the .NET
Framework at http://msdn.microsoft.com
/library/default.asp?url=/nhp/Default.asp
?contentid=2800136910.

<ramakrishna kuppa>: What’s Micro-
soft’s take on the observation and
comments made by Java evangelist
Rima Patel at http://java.sun.com/fea-
tures/2002/07/rimapatel.html, related
to adopting the MS .NET Framework.
Through Rima, I heard the Sun story,
and through MS, I’d like to hear a
detailed reply to the same.
<microsoft>: While the most charitable
thing we can say about Ms. Patel is that
she is woefully uninformed, we think it’s

JDJ Asks . . . Microsoft on .NET
Int

erv
iew

 wi
th

Mi
cro

sof
t

13NOVEMBER 2002

Java COM

rational
www.rational.com

Java COM

14 NOVEMBER 2002

infragistics
www.infragistic.com

infragistics
www.infragistic.com

15NOVEMBER 2002

Java COM

Java COM

16 NOVEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

better to provide customers with the
information to make their own decisions
rather than engaging in name calling.
The best source for information about
how the .NET Framework compares is
www.gotdotnet.com/compare. There
customers will be able to find independ-
ent analysis of benchmarking claims as
well as the code to actually replicate the
systems used in testing (which we rec-
ommend) and articles on comparisons.
In addition, at sites like www.gotdotnet.
com, www.asp.net, and http://msdn.
microsoft.com, you’ll get a sense of the
size of the .NET Framework developer
community and how those developers
are taking advantage of the new fea-
tures and functionality of Microsoft’s
new platform for XML Web services.

<anonymous>: Given that MS has the
industry really excited about .NET in
general, why do you think .NET has
had so few results so far in terms of
creating practical Web services?
<microsoft>: Customers have been very
successful with creating practical XML
Web services. You can see lots of infor-
mation about how customers are using
the new platform at http://msdn.micro-
soft.com/vstudio/productinfo/casestud-
ies/default.asp. Microsoft believes the
adoption of XML Web services will come
in waves. This first wave is about early
adopters and pilot projects within the
firewall. Customers will see how others
are succeeding with such projects and
will recognize similarities within their
organizations where similar XML Web
services will benefit them. As issues
around security and reliability are further
addressed by working with the industry
on standards, such as WS Security,
Microsoft believes that XML Web servic-
es will take off further.

<jon strayer>: What are your plans for
porting .NET to other operating sys-
tems (HP-UX, Solaris, AIX, Zos)?
<microsoft>: We do have a noncommer-
cial implementation of the C# and
Common Language Infrastructure
ECMA standards running on FreeBSD
and on Windows XP, but customers
shouldn’t read anything into that except
that those standards are true, open,
platform-neutral standards from a recog-
nized standards body. That said, we
haven’t announced any plans to imple-
ment the .NET Framework on other
operating systems.

<anonymous>: When will .NET support
XUL (XML User Interface Language)?
<microsoft>: We currently don’t have any
plans to support it.

<tom watts>: I do a lot of work with
servlets, and I believe the direct com-
parative component within the .NET
Framework for this is ASP.NET. What
are the major differences between
ASP.NET and servlets?
<microsoft>: ASP.NET provides two sep-
arate levels of infrastructure for support-
ing Web applications: the HttpRuntime
and Page Framework. These are rough-
ly analogous to servlets and JSP in
J2EE. The HttpRuntime is a highly
extensible framework to enable basic
processing of Web requests. Developers
taking advantage of the HttpRuntime
develop classes that implement the
IHttpHandler interface. This handler
implementation is then registered to
process a given request type (based on
URI or extension). When a request
matching the handler is received, the
HttpRuntime will create an instance of
the handler and call its IHttpHandler::
ProcessRequest method. The Page
Framework rests upon the HttpRuntime
(in fact, the base class of all ASP.Net
Web Forms implements IHttpHandler).
This framework provides a RAD infra-
structure for developing a Web applica-
tion. In short, the Page Framework pro-
vides “VB for the Web” functionality, hid-
ing the details of the HttpRuntime, mak-
ing it faster and easier to develop Web
applications.

<lee graba>: Can the entire .NET
Framework (or at least C#, the CLR,
and the .NET libraries) be clean-room
duplicated by any third party without
any IP restrictions imposed by MS?
Do you have patents on technologies
within .NET, and, if so, will you
renounce any intention to limit the
work of the Mono project and .NET
clones through patent enforcement?
<microsoft>: The .NET Framework
includes valuable intellectual property
belonging to Microsoft. Just like any
other company, we will review any
action that may affect our intellectual
property rights before making a decision
about how to proceed. Any other specu-
lation is just that, speculation.

<fred grott>: Given MS’s seven-year
history of claiming that Java is a
virus, I can see where the misinfor-
mation may be coming from. Is MS
going to change this policy of FUD
so that we may get open disclosure
of the benefits of .NET and Java?
<microsoft>: Microsoft has never claimed
Java is a virus, but we’re more than
happy to have a discussion about the
relative merits of competing technolo-
gies. It’s very clear that once developers

use Visual Studio .NET and the .NET
Framework, they agree with us and the
analysts that the .NET Framework is the
leading platform for XML Web services.

<jeff duska>: Why didn’t Microsoft
base .NET around Visual Basic
instead of C#? Visual Basic already
was using a P-Code VM. It just seems
as if you like Java, but since you
could/would not do Java you created
C#. As a VB developer, I know this
was my main reason for leaving the
fold for Java development. When
Microsoft says it’s more important to
clone Java than to support VB devel-
opers, I felt it was time for a change.
<microsoft>: Actually, we based
Microsoft .NET around the best of Visual
Basic, ASP, and MFC/ATL . The existing
Visual Basic runtime and p-code engine
did not allow us to do things like inheri-
tance and threading, which we felt were
absolute requirements of a modern pro-
gramming environment. Obviously, we’re
deeply committed to Visual Basic; it’s
the most widely used programming lan-
guage. We modernized it; we removed
the “glass ceiling” by providing full
access to the platform; and we are
ensuring that VB will continue to be the
most productive programming environ-
ment and language moving forward.

<tom jordan>: Platform independence
is a Java feature taken for granted by
Java programmers. On what plat-
forms is the CLR currently ported?
<microsoft>: Please see our answer to
Jon Strayer.

<kunal>: In the wireless space, how
does Microsoft plan to address the
features and popularity of Sun’s
J2ME that are missing in .NET? Are
there plans to make .NET’s Compact
Framework more carrier-centric (like
BREW, for example) or more applica-
tion-centric, like J2ME?
<microsoft>: Carriers and applications
are not opposing goals. A strong link
between the two is essential if the
industry is to be successful in delivering
innovative scenarios for users. We have
a very attractive offering that enables
the full wireless ecosystem. We enable
the broadest number of developers to
build compelling applications for mobile
devices using their existing skills and
knowledge. We enable devices to partic-
ipate in the Web services ecosystem
with technologies like .NET Compact
Framework for smart client applications,
and ASP.NET Mobile controls for Web

–continued on page 24Int
erv

iew
 wi

th
Mi

cro
sof

t

17NOVEMBER 2002

Java COM

bowstreet
www.bowstreet.com

(Brief)

Ant
f you haven’t heard of Ant before, it’s an

extremely useful Java build tool from the

Apache Jakarta group that makes building

Java projects a breeze. This article

provides a short introduction to Ant so

you can start using it in your own

projects. I’ll assume that you don’t know

Ant; however, a passing knowledge of

XML is required since the format of an

Ant build file is XML.I

A
w

ri
tt

en
 b

y
 J

o
ey

 G
ib

so
n

w
ri

tt
en

 b
y
 J

o
ey

 G
ib

so
n

Introduction to

Using a

build tool

to solve

business

problems

J2
SE

H
om

e
J2

E
E

J2
M

E

18 NOVEMBER 2002

Java COM

The Basics
Ant is very similar to the standard Unix tool “make” that just

about every experienced C programmer is familiar with. It does
its work based on a build file, typically called build.xml, that
tells Ant how and what to build. The contents of the build file
are marked up in XML, making it rather self-explanatory.
Different actions are triggered by aptly named XML tags with
attributes and subtags detailing the work to be done.

Listing 1 contains an extremely simple build file. First I’ll
show how to tell Ant to use this file from the command line
and what the output will be, then I’ll dissect the file, explain-
ing the different parts. To get us moving – a “task” is a basic
unit of work and a “target” is a grouping of tasks that does
something useful. Your build file will consist of several targets,
each containing one or more tasks. Targets, in turn, are con-
tained in a single “project.” I’ll explain these concepts shortly,
but now let’s run this thing and see what happens! (The source
code for this article can be downloaded from www.sys-
con.com/java/sourcec.cfm.)

Running Ant
Running Ant is simply a matter of invoking the shell script

or batch file that came with the Ant distribution. When you
execute this file with no command-line arguments, Ant gener-
ally looks in the current directory for a file called build.xml. If
it finds this file, it will execute the default target specified in it.
Figure 1 shows what happens when we execute Ant.bat with
no command-line parameters.

Notice that Ant tells you which targets are being executed
(the left-aligned text followed by a colon) and which task with-
in a target it’s working on (the word inside the brackets). This
gives you a “progress meter” of the build. Also notice that even
though we didn’t tell Ant which target to run, it executed our
JAR target, which is specified as the default target inside the
build file.

You can also tell Ant which targets you want it to execute
and the order. Most build files will contain a target called clean
that removes any artifacts from previous builds and “resets”
the project. It’s not uncommon to run this clean task just
before rebuilding the project. For our example this can be
accomplished by specifying the command line:

ant clean jar

Figure 2 shows the output from executing this command
line. Pay special attention to the order of the targets that are
executed.

Ant also supports a command-line switch that tells it
where to find a build file to use. This switch has the intuitive
name of –buildfile and takes a pathname to the file that will
serve as the build file. Using this switch, you’re no longer
required to name your build file build.xml, and it obviously
doesn’t have to be in the current directory. As you’ll see, this is
where the basedir attribute of the <project> tag comes in
handy. If you set it to “.” or didn’t specify it, all the relative path
information will be handled properly, since the dot means
“relative to the build file.” This is generally what you want.

If your build file is living in a directory that has a name sim-
ilar to “build” and the source and compile directories are sib-
lings of the “build” directory, then you would need to set
basedir equal to the parent directory or “..”.

The Build File
The Ant build file is an XML document that tells Ant how to

do the work to build a project. The first line in Listing 1 is the
standard XML processing instruction that tells the XML pars-
er which version of XML this document complies with (since

19NOVEMBER 2002

Java COM

there’s currently only one version of XML, this line will always
be set to version 1.0).

The <project> Tag
Line 3 is where the interesting content begins. The <proj-

ect> tag is the only top-level tag that is allowed in a build file.
In this example the <project> tag defines a logical name for
this project (the name attribute) and specifies a default target
(the default attribute) and a base directory for relative path
specifications (the basedir attribute).

The name is not really used anywhere with an out-of-the-
box Ant installation, but integrated development environ-
ments that understand and integrate with Ant will use the
name to differentiate between different projects. Examples of
Ant-aware IDEs include Eclipse, jEdit, and IntelliJ IDEA (URLs
are provided at the end of the article).

The default attribute tells Ant which target to execute if you
don’t specify one on the command line. In general, the default
target should be set to the one that’s most useful or the one
you execute the most; this will save some typing later on. In
our case we want everything to execute, so we’ll set the JAR
target as the default.

The basedir attribute is used when building up relative
pathnames. There are many properties set in a typical build
file that specify directories or files. It’s much easier and
portable to specify these in a relative rather than absolute
fashion. In other words, using the basedir attribute will allow
you to pick up and move your entire build
directory structure to a different disk or
machine, without radically changing your
build file. This is a big win, especially in a mul-
tideveloper scenario where different develop-
ers may not have the project directory in the
same place on their machines.

Setting Properties
Just as with make, it’s useful and indeed

encouraged to set constants for often-used
information to avoid retyping and copying.
This is accomplished with the <property> tag
that can appear either by itself directly inside
the <project> tag or inside a <target> tag. The
<property> tag has several options but we’ll
consider only one here: file. Supplying a file
name (which will be found relative to the
basedir attribute if no path is given) will create
properties for each line in the file. The follow-

ing is the properties file that we’re using for this project.

1 projectname=example1

2 src.dir=src

3 jar.name=${projectname}.jar

4 build.dir=build

This is standard Java properties syntax. We are defining
four properties, one of which is based on one other; the
jar.name property on line 3 is based on the projectname prop-
erty on line 1. The ${} syntax is Ant’s way of dereferencing a
property, substituting the property’s value. You’ll notice that
on lines 9, 13, 14, 18, 19, 24, and 25 of the build file we use this
same syntax – the same dereferencing syntax that works in the
properties file works in the build file.

Note that we could have specified each of these properties
directly in the build file, but it is much cleaner to move them
out to a properties file. This makes the build file less cluttered
and the properties a little easier to read.

Defining Targets
The <target> tag is the real workhorse of an Ant build file.

Define a target for each major area of functionality that you
need; this generally consists of some common setup, a com-
pilation setup, a step to create a JAR file, and perhaps steps to
create a WAR or EAR file.

In our example, we have five targets defined: init, prepare,
compile, jar, and clean. The init target in our example merely
loads up the properties file, as explained in the previous sec-
tion. There’s nothing stopping you from performing other
tasks in this target; one common task that you will find in init
is a call to <timestamp>, which sets properties containing the
current time and date. You’ll see an init target in most build
files that you examine.

The prepare target is another common target that provides
functionality that can be shared by multiple targets. Here the
prepare target is simply creating a directory using the built-in
task <mkdir> that we can compile our Java source code in.
Notice that the directory we ask it to create is the result of
using a property. The <prepare> target could do quite a bit
more, such as create entire directory hierarchies, but for our
purposes, simply creating this one directory is sufficient.

Notice that at the end of line 8 there’s an attribute that says
depends="init". This attribute sets up a dependency between
the current target and the target(s) specified. When Ant gets
ready to run our prepare target, it will see that we have a
dependency and will then go off to run the depended-upon

J2
SE

H
om

e
J2

E
E

J2
M

E

20 NOVEMBER 2002

Java COM

FIGURE 1 Output from Ant when run without command-line parameters

FIGURE 2 Output from running Ant specifying targets to execute

21NOVEMBER 2002

Java COM

?

oracle
www.oracle.com

target(s) and then come back and run ours. This is a powerful
mechanism for avoiding redundancy. As build files get larger,
you’ll end up with many targets that need some common
functionality; moving this commonality into a single target
and then setting up a dependency allows this to happen. Here
we specify that prepare depends on init, which makes sense
because prepare uses a property that’s set inside init. If init
were not called, we’d end up with a directory called
${build.name} being created. (Yes, we could have put the
<mkdir> task directly into the compile target or inside init, but
then you wouldn’t have seen the dependency mechanism in
action.)

Next, our compile target does what you might expect: it
compiles our code! As you can see from Listing 1, there’s a
built-in task called <javac>, a wrapper for the standard javac
compiler. It has many attributes, most of which are optional.
Here we tell it where to find the source code to compile,
srcdir="${src.dir}", and where to put the compiled class files,
destdir="${build.dir}". Using the task this way will compile all

Java source files that it finds in the ${src.dir} directory (and
all of its subdirectories) and put the binary class files in

the directory specified by the ${build.dir} attribute.
If the source files declared a package, then the

package structure will be represented in the destina-
tion directory.

Notice that the compile target depends on prepare.
Since we need the build directory to be created before we

try to write class files to it, we need to call prepare. But we also
need the properties that get created inside init. Because com-
pile depends on prepare and prepare depends on init, every-
thing will be executed in the proper order and compile will
work just fine.

Moving on, our jar target will take the output of our com-
pile step and build a Java archive out of it. This example is
almost overkill because of the simplicity of the project, but I

wanted to show you a few of the interesting built-in tasks that
Ant provides. You can see here that the jar task will build the
archive specified by destfile and will include in it any class files
(and directory structure) that are returned by the enclosed
<fileset>. In this case, it will return only a single class file, but
if there were others located anywhere under ${build.dir}, it
would also return those. And notice again that it has depend-
encies. It wouldn’t be terribly useful to create a JAR file without
first compiling our source files. Thus setting depends="com-
pile" will cause everything to be compiled (and prepared and
inited) before trying to create a JAR. Usually if a target fails, the
build aborts. There are a few exceptions, but generally this is
the rule.

Finally we have a target called clean. This target can be
executed to remove all artifacts of previous builds to ensure a
clean build. Here we’re deleting the compilation directory and
the JAR file created from a previous run. Both these deletes
will fail silently if the specified file/directory doesn’t exist,
which is fine. You’ll almost certainly want a clean target in
most of your build files, but care must be exercised when
using the delete task, the same care you exercise any time
you’re deleting files and directories. It’s quite painful if you
delete the current directory and its contents instead of a sub-
directory. Notice that our clean target depends on init. The
reason for this is that if init is not run, then the two properties
that are used by the <delete>s would never be defined and
nothing would get deleted.

That’s About It
That wraps up our discussion of the simple build file (the

Hello, World of the Ant world, if you will). You should now have
an understanding of what a build file looks like, how the dif-
ferent pieces relate to each other, how to declare that a task is
dependent on another, and what a couple of the built-in tasks
are.

When Things Go Awry…
Inevitably you’re going to write a build file that you think is

perfect, but when you try to run it your screen will fill up with
stack traces and other error messages. One of the most com-
mon errors in a build file is not properly formatting the XML

code. Remember that XML, unlike HTML, requires all attri-
butes to be quoted and all tags must be closed! The build file
in Listing 2 will not parse correctly because there are missing
quotes all over the place and at least one target isn’t closed.
Even leaving off one quote will cause your file not to parse
properly. An editor that does color syntax highlighting or
checks for well-formed XML will help you spot these errors.

Figure 3 shows the output from running Ant with the
bad.xml file in Listing 2.

The parser encounters the first error and indicates it as
being on line 5 (the number after the colon next to the file
name). Actually it’s on line 4, which is where we forgot to add
the closing quote to the name attribute of the init target. Since
Ant couldn’t complete parsing the file, it will abort the run

22 NOVEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

FIGURE 3 Output from running with bad.xml

“

“
Inevitably you’re going to write a build file that you

think is perfect, but when you try to run it

your screen will fill up with stack traces
and other error messages

spiritsoft
www.spiritsoft.com

23NOVEMBER 2002

Java COM

24 NOVEMBER 2002

after the first error. Once you add the missing quote and run
again, you’ll see the next error, an unclosed <property> tag.

Remember that the error messages may not always explic-
itly help you and, in fact, may be caused by something other
than your build file, such as a failed execution of an external
program. Get comfortable with Ant’s error messages; this is
certainly not the last time you’ll see one.

Summary
In this article I provided a quick introduction to an

extremely useful tool. You should be able to take what
you’ve learned here and immediately start applying it to
your current business problem. There are a number of
books on Ant available (one of which I coauthored) that
would be helpful. Don’t forget that the entire Ant man-
ual is included with the Ant distribution and is locat-
ed in ANT_HOME/docs/manual. It’s also available on
the Ant home page.

Links
• Jakarta Web site: http://jakarta.apache.org
• Ant pages: http://jakarta.apache.org/ant
• Ant Manual: http://jakarta.apache.org/ant/manual
• Eclipse: www.eclipse.org
• jEdit: www.jedit.org
• IntelliJ IDEA: www.intellij.com/idea
• BravePoint: www.bravepoint.com

AUTHOR BIO
Joey Gibson is a senior consultant and instructor for BravePoint, a consulting company in
Atlanta, GA. He is the coauthor of Ant Developers Handbook published by SAMS.

Java COM

1 <?xml version="1.0"?>
2
3 <project name="Example1" default="jar" basedir=".">
4 <target name="init">
5 <property file="build.properties"/>
6 </target>
7
8 <target name="prepare" depends="init">
9 <mkdir dir="${build.dir}"/>
10 </target>
11
12 <target name="compile" depends="prepare">
13 <javac srcdir="${src.dir}"
14 destdir="${build.dir}"/>
15 </target>

17 <target name="jar" depends="compile">
18 <jar destfile="${jar.name}">
19 <fileset dir="${build.dir}"

includes="**/*.class"/>
20 </jar>
21 </target>
22
23 <target name="clean" depends="init">
24 <delete dir="${build.dir}"/>
25 <delete file="${jar.name}"/>
26 </target>
27 </project>

1 <?xml version="1.0"?>
2
3 <project name="Example1" default="jar" basedir="." >
4 <target name="init>
5 <property file="build.properties">
6 </target>
7
8 <target name="prepare" depends="init">
9 <mkdir dir="${build.dir}"/>
10 </target>
11
12 <target name="compile" depends=prepare>
13 <javac srcdir="${src.dir}"
14 destdir="${build.dir}>
15 </project>

Listing 2: bad.xml, A Build File with Problems

Listing 1: build.xml

joey@joeygibson.com

J2
SE

H
om

e
J2

E
E

J2
M

E

applications reaching over 140 different cell phones and other
mobile devices. We work with carriers to enable them to deliv-
er value-added services that developers can leverage, such
as location services with technologies like MapPoint .NET. We
don’t believe there are features in J2ME that are missing in
.NET Compact Framework. Quite the opposite, we have a
very long list of features in .NET Compact Framework, such
as XML Web services support, XML data support, and rela-
tional data support, and window UI support that are not sup-
ported in J2ME CLDC+MIDP (what people commonly refer to
as J2ME), and many of these are not even supported in the
J2ME CDC spec (the rarer but larger 2–3MB profile).

<dennis marcum>: Why can’t you just be honest, cut out
the marketing nonsense, and let the technologies speak
for themselves?
<microsoft>: As we said earlier, we are happy to talk about the
technology. We believe our technology offerings are superior
to those of our competitors, and developers who have tried
Visual Studio .NET and the .NET Framework seem to agree.

<robert chartier>: How does Microsoft feel about the U.S.
government forcing them to push a competitor’s product
into the market using their own distribution avenue just
because that competitor has chosen to hide behind the
law instead of doing something more productive?
<microsoft>: We believe that once the court has reviewed
Sun’s extraordinary request for a “must carry” injunction that
would force Microsoft to distribute Sun’s Java Virtual Machine

with Windows, the court will make the correct decision.

<hubert chan>: I noticed that the new MCSD exams don’t
include Visual C++ as part of the qualifications. Does this
mean that Microsoft is shifting its main development lan-
guages focus to C# and VB.NET only? How about the
native C++ compiler development?
<microsoft>: We are committed to the C++ language and are
making numerous enhancements to our Visual C++ product.
We believe this is an oversight and are moving to correct it.

<malcolm davis>: Is Microsoft’s base strategy of “embrace,
extend, and extinguish” still alive or will they follow W3C
standards in regards to Web services–based technology
such as SOAP? In the past, Microsoft starts off heavily
involved and accepting of standards, then works the
standards to their own ends.
<microsoft>: Microsoft has been at the forefront of developing
technologies, such as SOAP and WSDL, and then makes
them available to the entire developer community. We’re com-
mitted to supporting the standards for XML Web services and
working with the community to develop new ones. That
process of extending standards to add new and improved
functionality is common in the software industry and a good
thing for both developers and consumers. It’s fundamental to
the design goals of the .NET Framework that interoperability
in a platform- and vendor-neutral way is seamlessly possible
and we intend to continue to deliver on that.

• • •
For future Ask JDJ sessions and to have your questions answered

please check www.n-ary.com/java/jdj/askjdj.cfm.

–continued from page 16

Int
erv

iew
 wi

th
Mi

cro
sof

t

25NOVEMBER 2002

Java COM

sitraka
www.sitraka.com

J2
SE

H
om

e
J2

E
E

J2
M

E Good News for
the Java Universe

J A V A - B A S E D W E B S E R V I C E S

If you have children, you tend to
measure time by their needs. The first
day of summer camp I was at the Web
Services Edge 2002 East Conference
(hope you found my “Show Report”
helpful [JDJ, Vol. 7, issue 8]), and the first
day back to school found me at Wall
Street IT - The Next Generation.

Held September 4 and 5, 2002, at the
Metropolitan Pavilion in New York City,
Wall Street IT - TNG gathered almost 40
vendors on the show floor and backed
them up with 15 seminars and presenta-
tions by some high-level players from
technology companies and major Wall
Street firms. Produced by Lighthouse
Partners with show management by
Flagg Management Inc., this conference
provided a good look at the state of tech-
nology.

Don’t worry if you’re not on Wall
Street. The show had plenty of good
information and, more important, good
news for the Java world. Sure the focus
was on using technology in the financial
services industry, but many of the ven-
dors work in other spaces as well and
these conferences presented a great
opportunity to read between the lines.
While everyone was waving the Web
services banner, by listening closely, I
realized something rather valuable:
despite how dank and miserable it may
be out there, Java is not going away,
maybe even can’t go away.

Many of the vendors on the floor
were Java shops. In and of itself this is
neither surprising nor very inspiring.
People still need technology, so it’s

inevitable that some Java work will get
done. It’s when you look closer that
things become interesting.

California-based DevelopMentor pro-
vides technical training in Java, XML, Web
services, and .NET. They were telling me
that at an XML show the prior week,
around 70–80% of the show attendees
they spoke with were asking about cours-
es on how to do Web services with Java.

Ah. Now we’re getting somewhere. If
you think about it, trainers have a
unique view of the market, especially in
tight times like these. Budgets allow for
only the most necessary of items.
Training courses have to be directly rele-
vant to existing projects.

With this thought in mind, I spent
about 30 minutes with Greg Brill, presi-
dent and founder of Infusion Dev-
elopment Corp. and the editor and driv-
ing force behind the CodeNotes book
series. Infusion develops custom train-
ing courses for corporate clients.
Apparently, they’re no longer called on
for basic Java courses. It’s all Java and
___. Clients want a blend of technolo-
gies. Infusion recently did a 14-day
training course for Lehman in Tokyo – a
Java, EJB with WebLogic, and XML/XSL
course. Demand for Infusion’s courses
has remained steady and perhaps even
grown a little. This is because their
courses are custom-developed to suit
the needs of particular projects and, as
mentioned earlier, those projects still
exist.

What Brill is seeing is that Java is the
facilitator of integration; this shows

Java’s maturity and penetration. In the
boom days, Java’s hype machine was
working full-time: everyone was putting
out J2EE servers and everyone else was
using them. Now Java is everywhere. It’s
a fact of life. No matter what happens in
the market, no matter what happens
with .NET or anything else, Java is not
going away. As Brill put it, Java colonized
tech companies much as the Spaniards
colonized the New World. Spanish is
spoken everywhere south of the U.S.

Web services is pretty much guaran-
teed to play a big part in any IT confer-
ence these days. Wall Street IT - TNG did
not disappoint. Day one provided us
with a seminar given by Anne Thomas-
Manes of Systinet entitled “Web Services
for Technology Managers,” in which she
gave a fairly high-level view of the tech-
nologies behind Web services and laid
out how Web services work. She also dis-
cussed which companies are providing
Web services solutions and gave some
guidance on how to pick from among
this field.

As you know, aside from SOAP,
WSDL, and UDDI, most of the Web ser-
vices standards are still evolving. The
industry is getting closer to having stan-
dards that deal with security, workflow,
and transactions, but we’re not there yet.
This would be a good place to note that
the only thing that doesn’t seem to move
on Internet time is the development of
the standards underlying the whole
mess.

There seems to be a burgeoning
awareness that the exposure of func-

Java isn’t going away

Java COM

26 NOVEMBER 2002

WRITTEN BY
STEVEN BERKOWITZ

You may have to dig beneath the hype a little, but at any gathering of 40 Java ven-
dors there’s bound to be some treasure buried in there somewhere. It’s just waiting for
you to find it.

27NOVEMBER 2002

Java COM

altova
www.altova.com

Java COM

28 NOVEMBER 2002

J A V A - B A S E D W E B S E R V I C E S
J2

SE
H

om
e

J2
E

E
J2

M
E

tionality via Web services, what is basi-
cally cross-language RPC, is not all that
sexy. According to Thomas-Manes, the
best a SOAP message can do is two to
three times slower than RMI, and that’s
top speed on a small, simple message.
You’ll really need something more to
make this take hold after the hype dies
down.

There was a panel discussion called
“Future Technology Platforms for
Deploying Web Services.” The modera-
tor was Frank Greco of Crossroads
Technologies and the panelists were Jim
Bole of Infravio, Dmiitri Tchikatilov of
Microsoft, Ed Schwarz of Sun, Adam
Greissman of UDICo, and JP Morgenthal
of Software AG. It was during this dis-
cussion that the “something more”
came out. The panel reiterated that Web
services are too slow and not secure and
that simply exposing old functionality
was inadequate.

According to this panel, the real
power of Web services is in enabling new
semantic definitions of data held in dis-
parate systems. The ability to look at
your data in combination, to bring it
together, allows you to leverage it in
ways not available before. It allows you
to create new functionality centered
around data access, data management,
and business process monitoring. In a

presentation immediately preceding
this panel discussion, John Stone and JP
Morgenthal declared that it won’t be
mere exposure of existing functionality
but rather a massive demand for seman-
tic standards that will ultimately drive
interoperability.

This view of Web services is penetrat-
ing the marketplace. Based on their Web
services management system, Infravio
recently deployed a series of applica-
tions at an industrial supplies company.
Using Java-based Web services, Infravio
exposed existing business functionality
but then wrote caching code and com-
bined the two to provide real-time
access to the company’s back-end SAP
system.

In talking to Jim Bole, Infravio’s VP of
engineering, I learned that for his client,
the true value of this project was not the
exposure of existing functionality but
rather the ability to manage the hun-
dreds of services being exposed in this
way. While initially this will be an inter-
nal facing system only, the company
intends to publish it to its suppliers as
well. Other values these Web services
provide include short time-to-market
and a new semantic architecture that
allows them to decouple back-end lock
in. Let’s not forget that it was Java that
solved the performance problems by

enabling caching. This was a pure Java
addition to Web services.

It is this sort of usage that will
expand the adoption of Web services
and that adoption will spur the stan-
dards.

Back in October 2000, Forrester
Research coined a new and rather silly
term: X Internet. There were two presen-
tations that fell under the title “Financial
Application Deployment with Web
Services and the X Internet.” It was dur-
ing the first of these that Michael
Baresich, CEO of CoKinetic, suggested
mostly tongue-in-cheek that Forrester
came up with this term to sell more
reports. Then he defined it: the X
Internet is a sloppy term for a thin-client
technology that adds more functionality
on the client side than is possible with
just HTML.

A much better term for this concept
is rich client. I have Michael Curry,
Altio’s director of product and services,
to thank for that phrase. Such applica-
tions bridge the gap between 100% thin-
client/HTML solutions and more tradi-
tional client/server applications. In your
basic browser-based application, what
you present to your user is HTML.
Doesn’t matter how fancy you are on the
server side – servlets, JSPs, and STRUTs –
the result is a static HTML document. At

jboss
www.jboss.com

29NOVEMBER 2002

Java COM

precise
www.precise.com

Java COM

30 NOVEMBER 2002

J A V A - B A S E D W E B S E R V I C E S
J2

SE
H

om
e

J2
E

E
J2

M
E

best, this is a compromise. Rich-client
applications offer a more robust inter-
face. Curry gave the second X Internet
presentation and demonstrated that
such applications can offer improved
visualization, real-time data (subsecond
data updates as opposed to hitting the
“refresh” button), and client-side data
manipulation.

There are a number of vendors in
this product space and they take a vari-
ety of approaches. CoKinetic has its
CoKinetic Player, which is appropriate
for institutional uses. Written in C++, the
player is a 2MB download and has a
5MB footprint. However, once installed,
ideally as part of the corporate desktop
image, it’s launched transparently when
a user clicks on a link for a CoKinetic
application. Synchrony Systems offers
Sizzle, a Swing-based rich-client system.
Altio wrote its own Java client for the
client side of its Altio Live suite of prod-
ucts. All three offer a developer’s toolkit
for building the user interfaces, and
each of these products accepts XML
messages to define and update the UI as
well as to carry the data to the applica-
tion.

Altio presents a true Java success
story. Its entire product is written in
100% Java. There is the AltioLive
Presentation Server that receives mes-

sages from your server-side applications
and then sends the output to the brows-
er where the AltioLive Smart Client sits.
The Smart Client has a 200Kb footprint
and handles all the rendering in the
browser. Altio chose this approach
rather than a more traditional applet for
a variety of reasons. First, size. That
200Kb application contains all the UI
controls, all the rendering, a DOM and
JAX Pack interpreter, as well as the logic
for communicating with the server. By
building their own client, Altio is able to
have better browser compatibility as
well. Using the 1.1 JVM, AltioLive Smart
Client can work with 4.0 browsers and
forward. This way, no one has to down-
load a plug-in to use an Altio applica-
tion.

I challenged Curry during his pre-
sentation, asking how Altio is guarding
against backsliding toward the old fat-
client problems. His response was that
Altio is dedicated to a very strict Model-
View-Controller paradigm and the only
functionality they put on the client side
is the View. Granted, that View is richer
than you can get with just HTML, but it
is strictly a View. In addition, after the
initial client load, the only data that
comes down the pipe is XML, so it’s eas-
ily compressed, and the presentation
server needs to send only the data.

Now, being a Java shop, even a good
Java shop, is not what makes Altio a suc-
cess. It’s their client base. They’ve recent-
ly installed an AltioLive-based system at
The Hartford, a large insurance company.
The Hartford has replaced the front end
of their old claims-handling system with
a rich UI-based system in Altio. The
Hartford’s primary reason is that they
wanted a thin, Web-based client but they
needed more functionality than was
available in HTML. And the development
time with Altio’s development environ-
ment was much quicker than they would
have been able to achieve with a more
traditional JSP-based application. Altio is
installing systems for seven or eight addi-
tional clients who all have similar reasons
for choosing Altio – better functionality
and faster development.

• • •
Conferences present you with a great

opportunity to discover what is happen-
ing in the industry. This is why SYS-CON
was pleased to see how many develop-
ers, IT managers, and vendors had
attended their Web Services Edge 2002
West Conference & Expo, October 1–3,
in San Jose, CA, where – as in New York
City – Java-based Web services were very
prominent.

sjb47@yahoo.com

acceltree
www.acceltree.com

AUTHOR BIO
Steven Berkowitz

has done
development and

project management
for Fortune 100

companies, startups,
and nonprofit

organizations. He
recently started

techniCrafters to
provide Web
development

services to small
business and

municipalities.

DESIGN ONCE...

REPORT ANYWHERE.

Instant Design/View

Multiple Data Sources:
DB
EJB

XML
API

Run Time
Group/Sort

Re-usable
Components Drilldown, Hyperlink

Property
Inspector

Dynamic Parameters

SQL Builder
or Write Your
Own SQL

Data
API SQL

Server

XML
DB2

EJB
Oracle

JReport Scalable Server Cluster

Printer, Postscript

Email

JReport lets you take your reports anywhere you want.
Imagine creating reports that pull together data from virtu-
ally anywhere, arranging them any way you wish, and deliv-
ering them precisely – whether in pure HTML, PDF, Excel,
XML, JSP, email, or your network printer. Imagine having
ad hoc reporting ability to create or modify reports on the
fly, right from the end user’s browser.

And all this is built on 100% J2EE architecture, to provide
secure, reliable, scalable performance and easy integration
with your enterprise systems. You can count on JReport:
any report, any format … anywhere.

©
C

O
P

Y
R

IG
H

T
20

02
 J

IN
FO

N
E

T
S

O
FT

W
A

R
E

, I
N

C
. A

LL
 R

IG
H

TS
 R

E
S

E
R

V
E

D
. J

R
E

P
O

R
T

A
N

D
 J

IN
FO

N
E

T
A

R
E

 T
R

A
D

E
M

A
R

K
 O

F
JI

N
FO

N
E

T
S

O
FT

W
A

R
E

, I
N

C
. O

TH
E

R
 T

R
A

D
E

M
A

R
K

S
 B

E
LO

N
G

 T
O

 T
H

E
IR

 R
E

S
P

E
C

TI
V

E
 H

O
LD

E
R

S
.

FREE DOWNLOAD! VISIT www.jinfonet.com/j11.htm OR CALL 301-838-5560

JREPORT TM

Flexible API’s

Integration with
App. Server, LDAP, etc.

Excel

PDF

HTML

jasonbell@sys-con.com

In my last few editorials I’ve been look-
ing back in order to look forward; for
example, how to encourage and

empower new programmers, how to learn,
and how to create better requirements and
user expectations. Now I feel it’s time to
look forward.

Diving into the dictionary (as I often
do), the term evangelist is defined as a
“bringer of the glad tidings” (Webster’s
Revised Unabridged Dictionary). When
was the last time you heard a Java-related
story that was going to save your life?
Something so radical and amazing that
you just had to stop everything and listen.
Evangelists have the ability to bring you to
the edge of your seat and make you say,
“This is for me!” Do you remember
1995–1996, when you couldn’t open a
computer-related magazine without Kim
Polese telling you the benefits of Java and
how it would revolutionize the world in a
short period of time? Kim also told us
about jazz dancing as a way to unwind,
but by that time I was off and running and
programming in Java. It was probably just
as well Kim didn’t tell us the news the
other way around.

One prime example of this is Java Data
Objects (JDO), which stands a good
chance of changing the way we access our
external data regardless of the data store.
Since most people access a relational data-
base with JDBC, not JDO, you need a good
evangelist to fight the good fight and tell us
why we should change direction. There are
times when you need to be motivated to
make a radical change and the evangelist
knows it – he or she has the passion, the
drive, and the tenacity to keep telling
about this great new thing until we take
notice.

What interested me about JDO was
that I have data in databases and in XML
that I would like to access the same way as
an object. I started reading Java Data

Objects by Robin M. Roos (Addison-
Wesley) and that got me on the right track.
The book really motivated me – Mr. Roos
described what could be achieved with
JDO and I started thinking I could move
mountains with this! The only thing that
dampened my enthusiasm was the lack of
detailed working examples that explained
how I could migrate from JDBC to JDO
without wanting to give up and look for
something else. There was a lot of empha-
sis on the JDO API, which I don’t have a
problem with. Perhaps I just need to be
motivated differently.

I believe there are so many software ven-
dors offering the same type of product in the
name of competition that we shy away from
them and stick to what works for us, and
business also dictates that there’s not much
time for research and development, which
is also a shame. It makes life difficult for the
evangelist and it makes it harder for us to
adapt to the evolution of Java.

Christian evangelists found it easy to
talk about what they believed in because
they believed in it so much; it was so infec-
tious that you had to start questioning
whether there was truth in what was being
said. The same goes for new technology: Is
product XYZ really going to change how I
program and improve my day-to-day oper-
ations? You have to learn how to weigh
what you have heard or read and discern if
it’s right for you. On the opposite side of the
coin, you can tell when someone is trying
so hard to sell you a technology they have
no faith in – it just never hits the mark.

To survive, Java and third-party APIs
and applications need an evangelist to
spark our enthusiasm to the same level
that got us programming in Java in the first
place. If this doesn’t happen, we will get
deflated over time and move on to some-
thing else that fires us up again. Now is the
time for new Java evangelists to step for-
ward. Preach it to me brother!

J 2 S E E D I T O R I A LO RJ
J2

SE
H

om
e

J2
E

E
J2

M
E

What Happened to the Evangelists?
JASON BELL J2SE EDITOR

32 NOVEMBER 2002

J 2 S E I N D E XX

32

40

34

Java COM

AUTHOR BIO
Jason Bell is a programmer and chief technical officer for a B2B Web portal in York, England. He has been involved in numerous

Web projects over the past five years, the last two of which have been servlet-based.

What Happened to the
Evangelists?
Diving into the

dictionary (as I often do) the
term evangelist is defined as

a “bringer of the glad tidings”
(Webster’s Revised

Unabridged Dictionary). When
was the last time you heard a

Java-related story that was
going to save your life?

Something so radical and
amazing that you just had to

stop everything and listen.
by Jason Bell

Thread Pooling in Java
Applications

There are several
textbooks and Internet arti-
cles that dwell on the per-

formance and scalability ben-
efits of using a thread pool

versus creating new threads
in a multithreaded Java

application. This article pro-
vides a brief summary of the

benefits and discusses the
drawbacks.

by Vishal Goenka

Managing Java Source
Code Dependencies

for SCM
There are many

facets to consider when
implementing even the most
basic software configuration

management (SCM). For
Java, with its import mecha-

nism, these simple goals
often become unmanageable

when the source code tree
grows beyond a certain point

of complexity.
by Tom Laramee

33NOVEMBER 2002

Java COM

ibm
www.ibm.com

Java COM

34 NOVEMBER 2002

Thread Pooling in Java Applications

T H R E A D M A N A G E M E N T

While some of them overstate the
benefits, most fail to emphasize some of
the caveats of Java thread pooling. Due
to space contraints, this article provides
only a brief summary of the benefits and
emphasizes the drawbacks. A list of ref-
erences that covers the benefits in more
detail is provided at the end.

What Is Thread Pooling?
Thread pooling refers to a technique

where a pool of worker threads is creat-
ed and managed by the application.
When a new job arrives, instead of creat-
ing a new thread to service it, it’s queued
by the thread-pool manager and dis-
patched later to one of the available
worker threads. The thread-pool man-
ager manages the number of active
worker threads based on available
resources as well as load considerations,
adding new threads to the pool or free-
ing some worker threads in response to
the number of outstanding requests.
The primary goals of thread pooling are
managing the number of active threads
in the system and reducing the overhead
of creating new threads by reusing
threads from a pool.

Why Pool Threads?
The primary argument in favor of

managing the number of active threads
in the system is: threads have a memory
overhead since each one needs a certain
amount of memory for its stack. Threads
also add scheduling overhead, since the
scheduler’s work increases as the num-
ber of threads increases. Depending on
the implementation of the Java Virtual
Machine, each Java thread on certain

operating systems may correspond to an
OS thread, making Java threads
extremely heavyweight, and may limit
the total number of active threads that
the JVM is allowed to create.

To be clear, I’m not saying you don’t
need to manage the number of active
threads in a system. After all, the bene-
fits of multithreading do have diminish-
ing returns once the number of threads
contending for the available CPUs
increases. If a server can process only
about 1,000 simultaneous requests, it
doesn’t help to dispatch each incoming
request as it’s made. Often the requests
must be queued and processed at a con-
trolled rate to maintain the number of
active requests below the server thresh-
old. A common mistake, however, is to
assume that dispatching queued
requests automatically calls for the
reuse of threads from a thread pool.
Dispatching a request to a new thread
and letting the thread die once the
request is serviced achieves the same
effect on managing the number of active
threads in the system.

Thread creation also has an over-
head that can be higher in many cases
than the overhead of managing a thread
pool. While the argument still applies,
the relative performance impact has
changed significantly over the years.
The newer JVM implementations are
optimized for creating threads; most
use a combination of user-level threads
(known as green threads) as well as sys-
tem-level threads (or OS threads) to
make creating threads much less
expensive than in earlier implementa-
tions.

The Dichotomy of Pooling Threads
The reasons for pooling threads seem

to make perfect sense, just as connection
pooling makes perfect sense in a server-
side application. Used inappropriately,
thread pooling in Java can introduce
serious programming flaws, ranging
from logic errors to potential deadlocks
and even performance bottlenecks.

I distinguish thread pooling in gen-
eral from thread pooling in Java simply
because many of the arguments that
apply to thread pooling in Java do not
apply to other programming environ-
ments. Perhaps a common source of
misconception about the benefits of
thread pooling in Java stems from our
experiences in other environments
where the cost-benefit equation tilts
strongly in favor of thread pooling. In
the following discussion, “thread pool-
ing” implies “thread pooling in Java,”
unless stated otherwise.

Thread Pooling Breaks Usage of
Thread-Local Variables

Thread pooling is not friendly to the
java.lang.ThreadLocal and java.lang.
InheritableThreadLocal classes that were
introduced in JDK 1.2 to provide thread-
local variables. These variables differ from
other variables in that each thread has its
own independently initialized copy of the
variable. The typical usage of a thread-
local variable in a multithreaded applica-
tion is to keep track of some application
context associated with the request, such
as the identity of the user making the
request. The get() and set() methods in
the ThreadLocal class return and set the
value that corresponds to the executing

WRITTEN BY
VISHAL GOENKA

There are several textbooks and Internet articles that dwell
on the performance and scalability benefits of using a thread pool
versus creating new threads in a multithreaded Java application.

What are the risks involved?J2
SE

H
om

e
J2

E
E

J2
M

E

35NOVEMBER 2002

Java COM

crystal decisions
crystaldecisions.com

36 NOVEMBER 2002

T H R E A D M A N A G E M E N T

thread. Thus, each thread executing a
get() on a given ThreadLocal variable can
potentially get a different object. The set()
similarly allows each executing thread to
set a different value for the same
ThreadLocal variable.

Think of a ThreadLocal variable as a
hashmap that stores one value per thread
by using the thread as a key into the
hashmap; however, these values are
“associated” with the thread in a stronger
and more intrusive way. Each thread
maintains a reference to a private version
of a hashmap (implemented as a package
accessible class, ThreadLocalMap) that
contains all the thread-local variables
associated with that thread. Each thread
uses the declared ThreadLocal variable as
the key into the hashmap to store one
value per ThreadLocal variable. When a
thread dies and is garbage collected, all
thread-local values referenced by it are
subject to garbage collection (unless
they’re referenced elsewhere).

InheritableThreadLocal extends
ThreadLocal to allow thread-local vari-
ables associated with a parent thread to
be inherited by any new child thread
created by the parent thread. This class
is designed to replace the ThreadLocal
in those cases where a per-thread attri-
bute being maintained by the variable,
such as UserId, TransactionId, etc., must
be automatically transmitted to any
child threads that are created. To
achieve the inheritance, the Thread
class maintains a separate private
hashmap (ThreadLocalMap) for inherit-
able thread-local variables. The Thread
constructor ensures that the inheritable
thread-local variables of the executing
thread (the parent thread) are copied
onto itself (the child thread).

Thus, each Thread object has explicit
references to all the thread-local vari-
ables, which in turn are only accessible
via the ThreadLocal or Inheritable-
ThreadLocal object. Like normal vari-
ables, private ThreadLocal or Inheritable-
ThreadLocal variables are only accessible
to the declaring class and the threads
associated with them. While it’s possible
to expose a method in the Thread class to

“purge” all (inheritable) thread-local vari-
ables associated with the thread, it would
require additional security checks to
ensure that only privileged code can do
so, the privilege being ascertained using
the Java permission mechanism. Given
the lack of such a construct even in the
latest versions of the J2SE/J2EE APIs,
there’s no way for a thread-pool manager
to purge or reset all the thread-local vari-
ables associated with a given thread
when reusing the thread in a different
request context without the explicit
cooperation of all code that uses any
thread-local variables.

Unless the declaring code “removes”
a value assignment by explicitly setting
the value to null, thread-local variables
remain assigned and hence “associated”
with the thread. As a result, any code
that uses thread locals risks using
stale/incorrect values of the variables
that were created in an earlier request
context when running in a pooled
thread. Given that ThreadLocal and
InheritableThreadLocal are standard
J2SE/J2EE classes, they’re quite likely
being used in various pieces of library
code, none of which is safe to be execut-
ed by a pooled thread without an explic-
it understanding of the usage details.

The only way to get around this is to
avoid using a pooled thread to execute
code you don’t know and control its
implementation details. An application
that uses a thread pool to dispatch
requests made in different contexts is
likely to have “inconsistent” logical
errors when executing a piece of code
while servicing a request that uses a
thread-local variable.

Lack of a Standard Thread-Pooling Library
There are several reference/example

implementations of a thread pool man-
ager in various texts that describe and
prescribe them, but most developers
will choose to implement their own
since these reference implementations
are meant only for illustration and
therefore are not product quality, are
copyrighted, nonstandard, and often
won’t meet your specific requirements.

Implementing a robust thread-pool
library is a complex task that requires
extensive tests in a variety of situations,
including different operating systems,
multiprocessor machines, extensive
load testing, various application usage
scenarios, and thread-pool manage-
ment policies. While it seems simple on
the surface, a robust implementation
must address such issues as pool-size
determination based on execution envi-
ronment and application usage, request
throttle, job scheduling, and perhaps
even priority scheduling.

When using a new thread per
request, the JVM’s scheduler ensures
that every runnable thread gets a fair
share of the CPU, even if the share hap-
pens to be really small, as in the case
where there are simply too many
threads for the given execution environ-
ment. Using a size-bounded thread pool
can cause queued requests to be
starved. If one of the queued requests
happens to be a producer (in a typical
producer-consumer paradigm), it can
lead to a deadlock if all the dispatched
requests happen to be consumers wait-
ing for the producer. Such application
dependencies may necessitate knowl-
edge of the application logic in the
thread-pool dispatching decision,
requiring some kind of priority dis-
patching construct. Priority-based dis-
patching opens up another can of
worms, exemplified by the Mars
Pathfinder “reset” problem caused by
overlooking the classic priority-inver-
sion problem.

Addressing all the design issues that a
robust thread-pool library must imple-
ment is a nontrivial task. This happens to
be one area of the system that can have
systemic effects and bring your applica-
tion to a grinding halt, unless tested for
all potential race conditions and dead-
locks, especially since the memory
model in multiprocessor systems is often
nonintuitive. This is no reflection of your
abilities as a programmer, rather a state-
ment about the inherent complexity of
the problem and the effort involved in
getting a robust implementation.

Performance Benefit Myths of Thread Pooling
While the lack of a standard imple-

mentation of a thread-pool library
seems like a lame excuse not to use one,
it’s worth asking why even the latest ver-
sions of J2SE and J2EE don’t provide one
if using a thread pool is so critical to per-
formance on server-side applications.
The answer lies in understanding the
details of the Java threads implementa-
tion. As mentioned earlier, newer JVMs
are optimized for thread creation and

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

Addressing all the design
issues that a robust thread-pool

library must implement is a
nontrivial task

“
”

37NOVEMBER 2002

Java COM

macromedia
macromedia.com

Java COM

38 NOVEMBER 2002

T H R E A D M A N A G E M E N T

destruction and use a combination of
user- and system-level threads to mini-
mize the overhead. Not that there aren’t
any potential benefits in using thread
pools, but these are insignificant unless
the jobs to be run by pooled threads are
short and quick and have a runtime
overhead that’s comparable to the over-
head of thread creation and destruction.
Determining the relative overhead of
thread creation for the job in question
and comparing it with the overhead of
thread-pool management must be
backed up with real tests in load condi-
tions. As with many performance-relat-
ed exercises, the results often defy com-
mon sense.

To Pool or Not to Pool
Before deciding that you need a

thread pool for your application
because that little timer thread you need
to start for every request seems too
much of an overhead, or deciding that
you can churn out a thread-pool library
for your particular usage in a day or so,
here are a few things to consider.

How critical is the performance of
that portion of the application and
would you make the same decision if it
turned out that you needed over a
month to write a robust thread-pool
library? Is it acceptable to risk an appli-

cation deadlock due to a less-than-
robust thread pool implemented in a
few days? Do you have the time to vali-
date and perhaps quantify the savings
achieved when using a pooled thread
versus creating a new thread? Do you
have the time to validate correct behav-
ior under heavy load on a multiproces-
sor machine, particularly when the
boundary conditions on pool size are
exercised? If you’re not sure about the
implementation details of some code,
such as usage of thread-local variables,
will the pooled thread run it?

In my own experience, a quick and
dirty thread-pool implementation of the
job at hand often comes back to bite
you. A small perceived performance
gain is probably not worth the risks
introduced by a less-than-robust
thread-pool implementation. Not that
these concerns don’t apply to other
design decisions, but thread pooling
falls in the category in which the risks
are much higher and the benefits are
often much lower than perceived.

Summary
Top reasons for pooling threads:

1. Limiting the number of active threads
in the system

2. Performance benefits of reducing
thread creation overhead

Top reasons for not using thread pools:
1. Breaks usage of java.lang.ThreadLocal and

java.lang.InheritedThreadLocal objects
2. Lack of a standard and time-tested

thread-pool library
3. The myths of thread pooling perform-

ance benefits

References
• Bloch, J. (2001). Effective Java

Programming Language Guide.
Addison-Wesley.

• Pugh, W., Ed. (2001). “The Java
Memory Model.” University of
Maryland. March: www.cs.umd.edu
/~pugh/java/memoryModel

• Hyde, P. (1999). Java Thread
Programming. SAMS.

• Oaks, S., Wong, H., and Loukides, M.
(1999). Java Thread, Second Edition.
O’Reilly.

• Shirazi, J. (2000). Java Performance
Tuning. O’Reilly.

• Sha L., Rajkumar, R., and Lehoczky,
J.P (1990). “Priority Inheritance
Protocols: An Approach to Real-Time
Synchronization.” IEEE Transactions
on Computers. September.

• Kalinsky, D., and Barr, M. (2002).
“Priority Inversion”. Embedded Systems
Programming, April, pp. 55-56.

J2
SE

H
om

e
J2

E
E

J2
M

E

web app cabret
webappcabret.com

AUTHOR BIO
Vishal Goenka is a

system architect for
the core platform

components at
Campus Pipeline. He

holds a BS in
computer science

from the Indian
Institute of Technology,

Kanpur (India). vgoenka@campuspipeline.com

39NOVEMBER 2002

Java COM

parasoft
www.parasoft.com

Java COM

40 NOVEMBER 2002

here are many facets to consider when implement-

ing even the most basic software configuration

management (SCM). For Java, with its import

mechanism, these simple goals often become

unmanageable when the source code tree grows

beyond a certain point of complexity.

This is mainly due to the reticulate interdependencies that
arise within the source code tree as it evolves. Also, because
code is seldom (if ever) retired, the code base continues to
grow, causing this network to become increasingly complicat-
ed over time.

In this article I explore the evolution of the typical Java
source code tree and the underlying relationships that make
even basic Java SCM problematic. I also suggest a simple way
to manage source code relationships to meet basic SCM goals.

Understanding these topics will enable Java development
shops to begin implementing simple yet effective SCM sys-
tems that balance the requisite process with unencumbered
development, testing, and operational deployment. By requi-
site process I mean staying a couple of steps ahead of SCM-
related firefighting while remaining free from laborious
and/or unnecessary processes.

Some Simple Goals of Java SCM

• Maintaining source code under revision control
• Managing code dependencies and third-party library

dependencies
• Managing builds and build dependencies
• Managing dependencies on third-party JARs

Beyond a certain range of complexity (usually a few hun-
dred total source files, depending on the skill of your develop-
ers and how quickly they’re being asked to churn out code) the
reticulate interdependencies within the code are unable to be
unwrapped. That is, the large number of interdependencies
introduced by import statements causes artificial dependen-
cies when trying to add features and build, branch, release,
and test your code.

More specifically:
• Building a subtree causes the compilation of every source

code file in your source tree due to circular dependencies.
This results in extremely lengthy build times for some proj-
ects I’ve seen.

• No source code is free to move along under its own devel-
opment cycle – you might need to build a subbranch n
times per day and another only m times per month, but,
because they have import interdependencies, they’re both
built at the maximum (required) rate.

• Branching and merging are extremely time-consuming and
complex and can introduce significant developer down-
time, mostly due to the large number of source files that
must be considered.

• Releasing code to operations is very difficult, as you have to
push every Java class file upon release.

• Testing is more difficult, if not impossible, since it’s harder
to isolate subbranches of code to understand their func-
tionality. It’s also more difficult to write a testing harness for
a subbranch (e.g., using JUnit).

Most current source code management tools deal with
navigating source hierarchies and finding objects and meth-
ods. These are great problems to solve, but not ones that we’re
primarily interested in (JavaDeps comes relatively close in
that it helps to discover some compilation dependencies that
go unnoticed by some compilers).

Similarly, many revision control systems (RCS) provide
check-in, checkout, branch, and merge capabilities, but none
address source code tree structure and how to manage the
requisite dependencies involved.

Target Audience
The target audience is developers, testers, and operational

support staff who are interested in taking the necessary steps
to actively manage their Java-based projects in terms of build-
ing source code for test and operational deployment; develop-
ing multiple versions of a product or service in parallel; and
replicating operational, test, and development environments
to reproduce unexpected behavior and fix bugs.

Large numbers of Java source files are in the range of
500..10K with large numbers of dependent third-party JARs in
the range of 50..1K. All told, we’re talking about a set of devel-
opment projects that have 0(50L) total document and code
artifacts…not very big, but large enough that it’s worth exam-

J2
SE

H
om

e
J2

E
E

J2
M

E

T

Java COM

41OCTOBER 2002

Java COM

borland
www.borland.com

Java COM

42 NOVEMBER 2002

ining how the code base evolves and how to keep it from turn-
ing into a liability instead of the asset it’s intended to be.

Due to its complex nature, this topic is too large to be cov-
ered in a single article. I’ll start by covering the basics of source
code management and builds, and finish by touching on the
topics of managing deployments and documentation. Future
areas for discussion include managing properties files and
build tools and building WAR files.

The Evolution of Java Source Code Hierarchies (aka Back to Basics)
Every Java shop I’ve ever worked in has followed an eerily

similar evolutionary path as far as its Java source code is con-
cerned:
1. Starts the root branch off by creating Java package

com.mycompany
2. Begins to populate the source tree with a layer of utility

and/or base classes, many of them the usual suspects like
com.mycompany.db, com.mycompany.utils, com.mycom-
pany. regexp, and com.mycompany.xml

3. Continues to populate this source tree with a set of servlets,
beans, data access, and JSPs that depend on the set of com-
mon classes (the aforementioned usual suspects)

This approach is extremely intuitive and works for a while
– for about as long as the codebase remains simple enough
that dependencies between distinct packages are well under-
stood.

The first dependencies introduced are usually servlets,

beans, and JSPs importing common/shared utility classes.
These dependencies are distinct, simple, and well understood.
However, soon thereafter, more complex references are intro-
duced as developers try to reuse as much code as possible
while minimizing the time they spend repackaging code. A
servlet from one package begins to look like a utility to anoth-
er package and is subsequently imported. This type of import
can create a circular reference (see Figure 1) between source
code files and sets the stage to make even simple SCM prohib-
itively complex.

Introducing circular references in Java is surprisingly easy
and extremely common, though, interestingly enough, I’ve
never actually heard of a developer admitting to such a practice.
Understanding these relationships, plus your source code’s
dependencies on third-party JAR files, is key to having a modu-
lar, branchable, buildable, testable, and deployable codebase.

Partitioning Source Code:The Introduction of Components
The first step in decoupling direct source code dependen-

cies is to partition your source code into components.
A component is a set of Java packages that provides a

specific set of functionality and has its own development
cycle. It doesn’t matter whether it’s one package or 20, one
source file or 200 source files (though using more than a few
hundred source files in one component will bring you right
back where you started, in terms of problematic source
code management). Having their own development cycle
means that, relative to the other components, the source
files need to be built/tested/deployed n times a day while
other source code needs to go through this cycle m times a
day.

Partitioning source code into components will become
fairly intuitive after a few examples:

• Example 1
Utils make great components because they are shared by

so many other source files and therefore are dependent on a
lot of files. This also causes them to have a quicker dev cycle
(and therefore a quicker build turnaround) than most other
source code. Create one component for all your utils, or par-
tition them further into multiple components (see Tables 1
and 2).

• Example 2
Database access classes can be grouped into separate

components. For multiple database servers, use multiple data
access components, tying each schema to a component 1:1.
This handles schema changes nicely and helps manage a
component’s dependencies on multiple database servers (see
Table 3).

• Example 3
A set of JSPs or servlets that provides a specific set of func-

tionality should be a separate component. This could be a
data-entry application, a data-feed reader, or an administra-
tive UI for one of your internal systems. Because these types of
components have their own requirements and delivery dates

and the requirements change, they end up on their own devel-
opment schedule, so it makes sense to create a component
here (see Table 4).

You could end up with as many as several hundred com-
ponents, each with anywhere between 10 and perhaps 350
source files. Although partitioning your source code looks
complicated, it’s actually easy (the difficult part is getting your
builds started).

All this source code needs to be checked into a revision
control system (RCS). Any/all RCS syntax in this article will be
in reference to Perforce (www.perforce.com), as it is has many
features that make SCM very simple.

In Perforce parlance, the component source code is
checked into location:

//depot/components/<component_name>/src

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1: Circular dependencies via Java import statements

“Every Java shop I’ve ever worked in has followed an
eerily similar evolutionary path as far as its
Java source code is concerned”

43NOVEMBER 2002

Java COM

nsoftware
www.nsoftware.com

Java COM

44 NOVEMBER 2002

For example:

//depot/components/FileUtils/src/com/mycompany/...

//depot/components/DataParser/src

//depot/components/UserData/src

Builds, branches, and documentation are also partitioned
under each component for RCS:

//depot/components/<component_name>/src

//depot/components/<component_name>/branch

//depot/components/<component_name>/builds

//depot/components/<component_name>/docs

Third-Party JAR and ZIP Files
The other source for build dependencies are between your

source code and JARs provided by a third party.
This necessitates actively managing these files to keep on top

of their multiple versions and frequent name collisions. It’s very
easy to impede the progress of debugging and building through
the mismanagement of third-party JARs and ZIPs (e.g., opening up
JARs manually to try to find a version number to find out what you
built against, or what version you have in production), and yet
remarkably simple to organize them intuitively and efficiently.

Because successive versions of third-party JARs sometimes
result in name collisions, it’s necessary to use the version num-
bers to maintain them under RCS. In Perforce, the JARs might
look like the following (using the JDK and JSDK as examples):

//depot/jars/jdk/1.2.2/rt.jar

//depot/jars/jdk/1.3.0/rt.jar

//depot/jars/jdk/1.3.1/rt.jar

//depot/jars/jsdk/2.0/jsdk.jar

//depot/jars/jsdk/2.1/server.jar

//depot/jars/jsdk/2.1/servlet.jar

//depot/jars/jsdk/2.2/servlet.jar

This versioning scheme allows components that might
depend on the 2.1 version of servlet.jar to reside next to com-
ponents that might depend on the 2.2 version. Both compo-
nents can be built and deployed in parallel and their depend-
encies tracked accordingly.

This approach also has the added bonus of allowing for any
client that has access to your RCS server to be able to run
builds, as every server has access to the requisite JARs via RCS.

Building Components
Now that your source code is partitioned and third-party

JARs are under RCS, it’s time to start building. Build require-
ments are very simple:
• A build for one component may only execute against that

component’s source code. All other build dependencies
must be linked through other components’ builds or
third-party JAR/ZIP files. In short, a component build
may not execute against any source code other than its
own.

• Results of builds (JARs) must be under RCS.
• Source code needs to be labeled with the build number, so

there is a link between a build JAR and the source code that
produced that JAR/WAR. This implies that given any JAR for
any component, the original set of source code can be locat-
ed.

• The dependencies for a deployment (a set of JARS that are
deployed together into QA/dev for testing/production)
must be under revision control; i.e., the list of dependent
JARs for a build of a component must be under revision con-
trol.

This first component built must be entirely self-con-
tained – it can be built using only its own source code and
(optionally) third-party JAR files. Components built this way
are seed builds and start your build process. Build each of
these components one at a time by compiling their Java
source, JARing up the resultant class files, and checking
these JARs into your RCS (build scripts should do all this for
you).

If you can’t isolate a component so that it’s entirely self-
contained, either repackage your source code (not often done
due to time constraints) or generate an invalid build so you
can begin to generate seed builds. (An invalid build is when a
component is built against its own source code plus the
source code of another component. Sometimes it’s impossi-
ble to isolate even one component so it’s self-contained, so
you’ll need to build it against multiple components’ source
code to get started. After this initial build, you’ll be able to
build it against its own source code and JARs created from this
first build.)

A high-level overview of a build involves the following
steps:
1. Sync up source code and third-party JARs from your RCS to

your local machine.
2. Make sure your target build number hasn’t been built

already.
3. Set up your CLASSPATH, which contains three sets of

entries:
• The path to the root of the component’s source
• The paths to other JAR files from other components
• The paths to requisite versions of third-party JAR files

J2
SE

H
om

e
J2

E
E

J2
M

E

TABLE 1: One component

TABLE 2: Multiple components

TABLE 3: Multiple data access components

TABLE 4: Separate components

45NOVEMBER 2002

Java COM

engenuity
www.engenuity.com

Java COM

46 NOVEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

laramee@pobox.com

4. Execute make to build your source.
5. JAR up the resultant class files and check this JAR into RCS.
6. Generate a build summary file (containing the environ-

ment, date, etc.) and check this into RCS.
7. Generate a label and stamp the source code for the build

with it.

Once you have all of your seed builds, begin to build those
components that have only one level of dependence on other
source code within your repository, i.e., they can be built using
only their own source code, the seed JARs, and, optionally,
third-party JARs. Build each of these components individual-
ly, JAR up their resultant class files, and check these JARs into
RCS.

Once all your one-level dependence builds are complete,
it’s open season to build the rest of your components, usually
done in the order of increasing number of dependencies. The
goal is to make sure no component is compiled against any
source code except its own.

What you’re effectively doing here is isolating like branch-
es of Java code in sets of Java packages against changes in
other branches of Java code (also grouped in Java packages).
This is probably the most important aspect of the build strat-
egy. This allows stakeholders of your SCM system to isolate,
and therefore understand, the dependencies between source
code and JARs, and trace any build to the source code that was
used to generate that build as well as replicate an environ-
ment by easily reproducing the JARs used to construct the
environment.

Equally important is that the source code for a compo-
nent is associated with its build JAR via a label, so it’s easy
to trace any class file you have in production back to its
source files, and then from there to trace other dependent
components’ class files back to their corresponding source
code.

This method of organizing your builds also frees up any
components that share a dependency on a common compo-
nent (e.g., utils). The common component is now on its own
development cycle, so it can iterate through many build
cycles while allowing dependent components to migrate to
newer builds when it makes the most sense. Said another
way, it allows for independent/parallel development of com-
ponents that have a dependency on a single, shared compo-
nent.

Build Example
At a high level, consider the following scenario for building

your first three components:
1. Component 1 – Utils: No dependencies. Build it against its

own Java source code to generate a JAR file that contains the
resultant .class files.

2. Component 2 – DataParser: Depends on a previous build of
the Utils component, as well as a third-party JAR called
xerces.jar (v1.4.1). Build it against its own source code, a
previous Utils component build, and the xerces.jar file from
xerces v1.4.1.

3. Component 3 – DataCaptureUI: Depends on a previous
build of DataParser, a previous build of Utils, and a third-
party JAR called servlet.jar (v2.0). Build it against its own
source code, a previous DataParser component build, a pre-
vious Utils component build, and the servlet.jar file from
jsdk 2.0.

Note that because Component 3 depends on DataParser,
and DataParser depends on xerces.jar, you’ll need to add
xerces.jar as a dependent JAR for the DataCaptureUI build.

The above set of builds and dependencies is shown in
Figure 2.

Conclusion
Managing source code dependencies is only the tip of the

iceberg for comprehensive SCM. Other facets of SCM that fit
into the component model include:
• Managing deployments: A deployment is the set JAR, ZIP,

WAR, and properties files that allow the component to
operate in its designated environment (usually dev, test, or
operations). Property and config files can be partitioned
similar to source code, whereupon all component artifacts
can be synced directly from your RCS server to their deploy-
ment server with deployment dependencies tested and well
understood.

• Managing documentation: Component documentation
can be bundled with its corresponding component under
RCS and mapped to a mount-point on your intranet server
for automated publishing. Documentation management
has a large number of implicit requirements involving avail-
ability, content, and versioning from release to release.

Partitioning Java source code into components and for-
malizing dependencies will provide several key benefits for
your Java-based projects, some of which are implicit thus far:
• Ability to provide parallel development of projects that

share a common codebase
• Ability to easily deploy to development, test, and opera-

tional environments
• Ability to minimize the amount of code associated with a

build/deployment
• Elimination of confusion and name collisions due to third-

party JAR dependencies
• Reproduction of deployment environments to help repro-

duce problems (and then eliminate them)
• Ability to retire code and branches of code when a compo-

nent is retired

AUTHOR BIO
Tom Laramee is a software developer currently working with the Blindsight Corporation
writing computer vision software for embedded systems and handheld devices. He has spent
the last five years designing and building Web applications as both a development lead and
system architect. He holds an MS in electrical and computer engineering from the University
of Massachusetts, Amherst.

FIGURE 2: Build example with dependencies

47NOVEMBER 2002

Java COM

new atlanta
newatlanta.com

48 NOVEMBER 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LO R

Has Hell Frozen Over?
JASON R. BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E

J

J 2 M E I N D E X

It’s just as well I’m not a gambler. After
pessimistically deciding that it would
be a clichéd “cold day in hell” before I

saw a Java-enabled phone arrive on these
shores, our local Vodafone launched the
excellent Nokia 7650. Color and Java, no
less. Of course, certain international read-
ers will now be yawning because they’ve
had Java phones for a while, and color for a
proverbial age. If you happen to be reading
this in Japan, you’re probably wondering
what the fuss is all about.

Trying to get an evaluation 7650 out of
Nokia is about as easy as removing a sore
tooth from a wide-awake Siberian tiger just
as a veterinarian pokes a cold rectal probe
in a sensitive area. Actually, no, scratch
that. Considering the glacial lack of reac-
tion from Nokia, perhaps a better descrip-
tion is trying to get served in a high-class
restaurant when a movie star has just
walked through the door. If you still don’t
understand what I mean, think about the
following statement: “In space, no one can
hear you scream….”

It appears that the same is true when
you’re trying to get the attention of a phone
manufacturer.

It seems that our other major telco has
decided to look into J2ME’s competitor in
the mobile space: BREW, with a comment,
attributed to this telco’s management,
along the lines of “…applications can get
approved by Qualcomm for a few hundred
dollars.”

Which is where they lost me. After look-
ing on the Qualcomm/BREW site, the best
I could come up with was about $1,150 to
certify yourself as a developer and then
have a minimal (in their words, Tier 1)
application certified.

There are a couple of ways of looking at
this cost. From one point of view, a central-
ized certification process means that a
telco can be relatively confident that an
application will not cause problems on the
phones of their client base. From another
point of view, Java’s inherent security – and

the limitations that have been built into
the MIDP platform for that very reason –
does remove most of the necessity for an
intensive certification process and for dig-
ging rather deeply in your wallet to get
your newly developed app onto phones.

My belief is that one method will tend
to foster an independent and competitive
developer community (as well as com-
mercial development companies), and
the other will only favor those with money
to spend. I also believe that the most
innovative applications are going to come
out of that independent developer com-
munity. This doesn’t even take into con-
sideration the likelihood of obtaining
open-source applications if developers
have to dish out their hard-earned cash to
get onto a phone. I’m interested in hear-
ing what other people’s opinions are in
that respect.

The device market is heating up for
Java-capable hardware. If you haven’t yet
found Java’s wireless device page (http://
wireless.java.sun.com/device), it’s worth
taking a look. The list is already huge, and I
don’t believe it’s complete (they’re missing
the Nokia 6650 to start with). Despite this
ever-growing list, there’s still a lack of edu-
cation among the general public as to what
J2ME is and why they need it on their
phones. This is partly the fault of Sun and
the device manufacturers in their efforts
(or lack thereof) to publicize the technolo-
gy in a way that is appealing to the masses.

However, they’re not entirely to blame –
perhaps the main reason is that there is
still no killer app out there that’s a “must
have.” What we need is an app that gener-
ates its own “word-of-mouth” buzz – it’ll
probably be aimed at the teenage market
and, undoubtedly, will be entertainment-
oriented. This is complete conjecture, but
this killer application will be what finally
drives any explosion of J2ME phone sales.
Perhaps you’re developing it right now. Let
me know.

• • •

AUTHOR BIO
As well as being the J2ME editor for Java Developer’s Journal, Jason R. Briggs is a Java programmer and development manager

for a wireless technology company, based in Auckland, New Zealand.

Java COM

48

50

54

Has Hell Frozen Over?
It’s just as well I’m

not a gambler. After pessimisti-
cally deciding that it would be

a clichéd “cold day in hell”
before I saw a Java-enabled

phone arrive on these shores,
our local Vodafone launched

the excellent Nokia 7650.
However, trying to get an eval-

uation 7650 out of Nokia is
about as easy as removing a

sore tooth from a wide-awake
Siberian tiger.

by Jason R. Briggs

Unlimited Encryption on
Limited Devices

Getting decent
cryptography onto mobile

devices has been an aim for a
long time. While SSL (or TLS,

as it’s now known) provides for
most of our security needs on

the desktop, the algorithms and
processes it uses are often

beyond the ability of the
devices in our pockets.

by Bill Ray

MIDP 2.0 – Mobile
Computing Arrives

Several years ago
Motorola, Inc., and Sun

Microsystems, Inc., recognized
a potential new market for the
Java programming language.

Small mobile devices, such as
cell phones, were becoming

more powerful but did not pro-
vide a common programming

platform. With different proces-
sors, operating systems, and

capabilities, it was impossible
to write an application that

would work on more than one
family of devices.

by Roger Ritter

This month, Bill Ray investigates encryp-
tion on limited devices, and Roger Ritter looks
at what you can expect from the second itera-
tion of the MIDP specification. Roll on MIDP
3!!

49NOVEMBER 2002

qualcomm
qualcomm.com

Java COM

Java COM

50 NOVEMBER 2002

Unlimited Encryption on Limited Devices
J A V A C R Y P T O G R A P H Y

With a 4-bit key it worked great, with
an 8-bit key it took about 30 minutes to
encrypt or decrypt anything, and after
three days of trying with a 16-bit key, we
had to use the computer for something
else. Just to give you some idea, even
back then 128 bits was considered the
minimum for secure communications,
and each bit doubles the time.
Cryptography is not fast; its security is
bound up in the complexity of its algo-
rithms. Those who are writing modern
cryptography need to be much better
mathematicians than I. Of course, Java
is not a fast language – as Java develop-
ers, the price we pay for platform inde-
pendence and stability is speed – so
writing cryptography in Java doesn’t
make a lot of sense on the surface.

On servers it’s a relatively simple
matter to add another processor, and
even today’s desktop systems have no
problems running (efficiently coded)
cryptography routines in Java, but
mobile devices have enough trouble just
updating the screen and responding to
inputs. Getting Java working is hard
enough in such constrained environ-
ments, but adding cryptography to the
Java mix on a mobile device is surely
madness!

Mobile Security
Getting decent cryptography onto

mobile devices has been an aim for a
long time; while SSL (or TLS, as it’s now
known) provides for most of our securi-
ty needs on the desktop, the algorithms
and processes it uses are often beyond
the ability of the devices in our pockets.
Mobile telephones, in particular, are
changing into mobile payment devices
in the first stages of the long-awaited
move to an electronic currency. PayBox
is already offering a service enabling
payment, both on- and offline, via a
GSM mobile telephone, while car-park-
ing meters in the north of England can
be reset from a mobile phone. Users are
realizing that their mobile phone can do

a lot more for them, but current systems
are clumsy and often expensive to run,
not to mention that when I want to buy
something from a shop, it’s insane that
the shopkeeper and I both have to make
phone calls to a central server to author-
ize the payment.

Technologies like Bluetooth are pro-
viding a conduit for more direct interac-
tion – a mobile wallet in a Bluetooth-
equipped mobile telephone could be
used to pay for goods in shops, and even
automatically authorize payment for
transport without user involvement. In
this environment, mobile telephones
have one great advantage over PDAs:
they’re always on, ready to respond to
incoming requests or scheduled events.

The barriers to such usage, while
temporary, are considerable. The cost of
an infrastructure to implement such a
payment system is massive, but the lack
of standardization is the primary prob-
lem. Once everyone is using a standard
payment system (perhaps a new
Bluetooth profile?), we’ll see a mass
deployment of mobile payment sys-
tems; until then they’ll be limited to cor-
porate installations and arcologies, but
even then only if strong encryption can
be deployed on devices like mobile
phones and is available to application
developers. GSM mobile phones have a
Subscriber Identity Module (SIM) that is
often capable of dealing with strong
cryptography, but it’s also under the
complete control of the network opera-
tor (for sound commercial reasons) and
is rarely available to anyone else.

Why Use Java?
Speed is not the only thing that

counts against Java when considering
cryptography; memory safety is another
issue that has never been satisfactorily
resolved. Cryptography is generally
based around keys, and security is man-
aged by limiting access to certain keys
and ensuring those keys are defended
against attack. Applications like Pretty

Good Privacy (PGP) store the keys,
which are encrypted using a passphrase
as a key to decode them, on a desktop
computer’s hard drive; but while the
keys are being used they are in memory
and could, in theory, be accessed by
another application running at the same
time, depending on the operating sys-
tem being used.

In C it’s possible to take steps against
such theft, but in Java the programmer
has almost no control of the memory,
and keys held in RAM could conceivably
be read by another application. Even
worse, if the encryption program is rely-
ing on Java garbage collection, there’s no
telling how long those keys will actually
exist in memory; they could even find
themselves paged into virtual memory
(on the hard drive) where they might
hang about for months before that part
of the hard drive is used again!

Java implementations of cryptogra-
phy generally recommend not using vir-
tual memory, and a modern desktop
operating system should provide some
memory protection to separate pro-
cesses, but handheld systems rarely
have such protection. Even though
being paged to a hard drive isn’t a prob-
lem, having keys hanging about in
memory is not an ideal situation.

Working around these problems isn’t
easy, so there must be a significant
advantage to make Java worthwhile, and
it is platform independence that pro-
vides that advantage. On desktop com-
puters we have to deal with two or three
different operating systems. Even on
PDAs there are only three or four to
worry about, but on mobile telephones
things are a lot more complicated.
Symbian has taken great strides with
EPOC (their OS), but Palm and WinCE
are vying for some market share, not to
mention the half-a-dozen proprietary
operating systems that are still being
used. Even code written in ANSI C can’t
be relied on to work with every mobile
phone. Java is rapidly emerging as the

WRITTEN BY
BILL RAY

Ihave the dubious honor of having written one of the very first
implementations of the RSA cryptographic algorithm in Java some
years ago, and very badly I wrote it too.

Security on your mobile phone

H
om

e
J2

E
E

J2
SE

J2
M

E

51NOVEMBER 2002

Java COM

sitraka
www.sitraka.com

Java COM

52 NOVEMBER 2002

W I R E L E S S T E C H N I Q U E S

true cross-hardware application plat-
form. Many phones don’t actually have
the capability to install and remove
applications, but even those are moving
toward being able to execute MIDlets,
opening Java to everything but the most
basic handsets.

Java cryptography certainly would be
useful for limited devices, and the
Connected Limited Device Configura-
tion would seem ideal, but getting RSA,
or something similar, working at an
acceptable speed would be close to
impossible…which brings us to NTRU.

A Different Solution
NTRU was started in 1996 to capital-

ize on the development by the founders
of a new encryption algorithm designed
to minimize processing requirements
and run on limited devices. In the field
of cryptography there are many compa-
nies offering “secret” algorithms that
they claim are breakthroughs. However,
we generally take “secret” to mean
“untested,” as peer review is the only
way for an encryption system to be
proved secure. It is, of course, impossi-
ble to prove that an encryption system is
secure; you can only prove that you per-
sonally can’t break it (which, if you are
me, is no great recommendation). When
looking at an encryption algorithm it’s
important to know that reputable peo-
ple in the field have attacked it and can’t
break it. NTRU has spent a few years
doing that, relying on a patent to protect
its IPR and working with the cryptogra-
phy industry to demonstrate the
strength of its algorithm.

Even with a much-improved algo-
rithm, getting something small enough
and fast enough for CLDC devices isn’t
easy. Trying to do it in Java isn’t likely to
make it any easier. Even NTRU didn’t
start in Java; it offers implementations
in a variety of languages and on some
very small devices, including RFID tags
and Smart Cards. But as already dis-
cussed, it’s the mobile phone explosion
that presents the most interesting and
potentially profitable application of
encryption – and Java is the only effec-
tive way of reaching those platforms.

Having decided to work on a Java
implementation of NTRU’s algorithm,
there’s the minor matter of which version
of Java to support. The days of just being
“Java compatible” are long gone, and
now there seems to be almost as many
versions of Java as there were program-
ming languages that Java was supposed
to replace! Most of the mobile phones
support at least the CLDC specification,
so that was a logical place to start.

The NTRU algorithm doesn’t require

floating point mathematics, which
helps, and being an encryption library it
has no graphical requirements so it
should be usable on all versions of Java,
once developed for the CLDC. Indeed,
the same core encryption and decryp-
tion code is used on both the server and
client sides (the server is designed to run
under J2SE and provides the same cryp-
tographic services as the client).

As the algorithm had already been
implemented in several languages, the
port of the core code to Java was com-
pleted in a few months by a small team
of developers, though testing and inte-
gration took considerably longer.
Embedded developers still have very lit-
tle choice in terms of working environ-
ment, so the Wireless Toolkit from Sun
represents state-of-the-art. NTRU uses
Visual Café for its server-side develop-
ment, as this appears to produce faster
compiled code, but on the CLDC side,
text editors and command-line compil-
ers are the order of the day.

Worse is the lack of debugging or
remote testing environments. While
desktop objects may contain their own
test harnesses or be loaded into test
containers, when your whole applica-
tion is supposed to be under 5KB it’s not
easy to get testing in there too. In fact,
when you’re working under such con-
straints there are good arguments
against object-orientation, and the core
of NTRU’s cryptographic code reflects
this philosophy. By explicitly creating a
memory context and managing vari-
ables within that context, it hopes to
avoid the persistence problems inherent
in Java applications, and in most cases it
should be right. By avoiding object
methodologies, NTRU can also avoid
dependence on the Java garbage collec-
tor, which can be an unreliable beast at
the best of times especially on embed-
ded platforms.

NTRU also decided not to support the
JCE. The Java Cryptographic Extension is
a mechanism that allows suppliers of
cryptography to integrate their libraries
in a standard way with Java applications.
The API is certainly flexible, allowing
detailed control of the cryptographic
process, but some would claim that flexi-
bility has led to excessive complexity and
made the API difficult to use. People who
work in cryptography regularly might
find the JCE pretty intuitive, but Java pro-
grammers just want to be able to encrypt
and decrypt without worrying about the
messy details. There is the argument that
such programming should only ever be
done by professionals, but back in the
real world we all want a simple API.
There’s also the issue that the JCE is not

supported by the CLDC, and implement-
ing it would have made the NTRU code
much bigger.

Getting cryptographic routines into a
5K CLDC–compatible library is very
impressive, but it’s not going to solve
most of the problems with the scenarios
discussed at the beginning of this arti-
cle. The ability to encrypt communica-
tions and provide digital signatures (to
enable proof-of-identity, essential for
any m-commerce system) is only part of
the problem; there’s still the issue of
where and how the keys will be stored.
There is no point in providing wonder-
fully secure communications when the
encryption keys have to be downloaded
over an insecure link, so keys will have to
be stored somewhere on the device and
in a secure manner.

Most of the J2ME mobile telephones
being launched at the moment have
only the ability to run downloaded Java
code. MIDP application installation and
management is generally kept to a min-
imum to ensure the simplicity of the
user interface, and file management is
often nonexistent. MIDP specifies that
data can be stored locally, but the devel-
oper has no idea where (physically) that
data will be stored and so can’t rely on it
being secure. NTRU is in the process of
approaching handset manufacturers
about finding some secure space on
their handsets for key storage, but again
the lack of standardization causes prob-
lems. Manufacturers will need a lot of
convincing to embed facilities for NTRU
in their handsets, especially when NTRU
will be collecting a license on every
device using its algorithm. Not to men-
tion, once we’re talking about putting
things into the handsets, we might as
well embed some cryptographic hard-
ware.

Doing the encryption in hardware is
inherently more secure than leaving it to
the software, and this issue is not limit-
ed to mobile devices. As the recent
releases about Palladium make clear,
the only way to secure any system is to
embed the cryptography at a hardware
level. GSM mobile phones have a cryp-
tographic chip already embedded in the
form of a SIM chip, and if we’re going to
add cryptographic functions, this is the
sensible place for them. While the NTRU
algorithm may well be a revolution, and
getting it working in Java is spectacular,
the practicality and usefulness of a lay-
ered security model remain to be seen.
We’ll certainly see the NTRU algorithm
in many places, but it’s still hard to see
Java being one of them.

H
om

e
J2

E
E

J2
SE

J2
M

E

bill@network23.co.uk

AUTHOR BIO
Bill Ray has worked

for several
telecommunications
companies around

Europe, including
Swisscom where he
was responsible for
the development of

their Java-compatible
DTV platform. He is

security editor for
Wireless Business &

Technology and
coauthor of

Professional Mobile
Java Development,
published by Wrox

Press.

53NOVEMBER 2002

Java COM

inetsoft
www.inetsoft.com

Java COM

54 NOVEMBER 2002

everal years ago Motorola, Inc., and Sun

Microsystems, Inc., recognized a poten-

tial new market for the Java program-

ming language. Small mobile devices,

such as cell phones, were becoming more

powerful but did not provide a common pro-

gramming platform. With different processors, operating sys-

tems, and capabilities, it was impossible to write an application

that would work on more than one family of devices.

This situation is ideal for Java – its interpretive nature hides
hardware differences and provides a single, consistent set of
APIs for developers to write to. The only problem was that Java
was big, too big for the typical cell phone, whose memory is
measured in kilobytes rather than the megabytes that the Java
Virtual Machine and associated APIs needed.

To meet this new market, the two companies started a
development program to trim the JVM until it could fit into
limited, battery-powered mobile devices. Once they proved
that it could be done and demonstrated it at JavaOne in 1999,
they decided to standardize it through the Java Community
Process. This effort produced the Connected, Limited Device
Configuration, CLDC 1.0, and the Mobile Information Device
Profile, MIDP 1.0, both of which are part of the Java 2 Micro
Edition (J2ME).

MIDP 1.0
MIDP 1.0’s goals were simple: define a small Java profile

that would run on a variety of small devices. At a minimum,
the devices would have a screen size of 96x54 pixels, with one-
bit display depth and approximately square pixels. They could
use a keyboard (either QWERTY or phone-style) or touch

screen for user input and have two-way, possibly intermittent,
wireless networking. Memory was quite limited, but would
include nonvolatile storage for user applications and their
data. The Java classes defined by the MIDP 1.0 specification
were sufficient to develop small applications, but were quite
limited in their display and interaction capabilities.

Many developers recognized these limitations almost
immediately on release of the final specification and started
asking for changes. Among other limitations, the MIDP 1.0
user interface classes (called, together, the LCDUI) defined
only a small selection of user interface components, and this
selection wasn’t extensible. There was no way to position the
elements, so there was no way to group elements on screen.
The specification required MIDP-compliant devices to sup-
port HTTP networking, but e-commerce applications need
HTTPS for security. There was also no security differentiation
for MIDP applications (MIDlets). Although the Java sandbox
security model provided security from rogue MIDlets, MIDP
1.0 did not provide a way for a device manufacturer or service
provider to define trusted MIDlets that could be given greater
access to a device’s capabilities. Finally, the sound capabilities
defined by the first MIDP specification were limited.

All these limitations were required by the restricted capa-
bilities of cell phones, PDAs, pagers, and other small portable
devices in development during the original MIDP committee
meetings. Since the hardware has been improving rapidly, a
follow-up committee was quickly established to expand the
MIDP capabilities to match new hardware and to address the
concerns and problems identified in the first specification.
The new capabilities defined in the next-generation MIDP
specification (MIDP 2.0) include new graphics and user inter-
face classes, secure communications, a MIDlet security
model, better sound capabilities, and enhanced communica-
tions methods.

The MIDP 2.0 committee recognized from the beginning
that the new MIDP specification must remain compatible with
MIDP 1.0. The first MIDP specification was limited, but it was
also popular. By the time the MIDP 2.0 specification would be
ready, there would be hundreds of thousands, perhaps mil-
lions, of MIDP 1.0 devices on the market. It wouldn’t be prac-
tical to declare them obsolete and start over. The committee

Java COM

H
om

e
J2

E
E

J2
SE

J2
M

E

S

55NOVEMBER 2002

Java COM

altoweb
www.altoweb.com

Java COM

56 NOVEMBER 2002

Java COM

decided that MIDP 2.0 would supplement, not supplant,
MIDP 1.0. Device manufacturers and developers could con-
tinue to develop for MIDP 1.0 if they didn’t need the newer
features, or could design to MIDP 2.0 requirements for higher-
end devices and applications.

Let’s look at the new features.

Security
Probably the most necessary of the higher-end services is

secure HTTP connections. Many of the applications pro-
posed for MIDP-class devices are e-commerce applications –
simple things like the ability to buy movie tickets online
while traveling to the theater. Other applications that trans-
mit personal data or produce billing information also
require secure communications. Although these applica-
tions are possible without secure HTTP, most people don’t
want to risk their credit card or personal information over
insecure network links. In real life, HTTPS is a requirement
for any application that expects to send secure information
to a Web site.

MIDP 2.0 satisfies this need with several new components.
The HttpsConnection interface defines the necessary meth-
ods and constants to establish a secure HTTP connection in
accordance with RFC 2818. The connection can be established
in several ways. It can use HTTP over TLS, SSL 3.0, WTLS, or
WAP TLS Profile and Tunneling. Information is authenticated
through the use of X.509 certificates. At a lower level in the
network stack, a SecureConnection interface provides the
secure socket connection for those applications that want an
SSL connection without using HTTPS. In addition, a
SecurityInfo interface allows the application to access infor-
mation about a secure connection. This information includes
details of the protocol used, the cipher suite, and the certifi-
cate that authenticates the connection.

The ability to perform X.509 authentication also allows the
VM to perform authentication on MIDlets.

MIDP 2.0 defines a model for identifying trusted MIDlets and
establishing the MIDlet’s access to particular APIs or functions
that require explicit authorization. This model begins with a
protection domain that defines a set of permissions and relat-
ed interaction modes. The permissions are divided into two
sets: allowed and user. Allowed permissions don’t require user
interaction and provide access to protected functions within
the protection domain. User permissions require that the user
give explicit permission before the MIDlet can access protect-
ed functions or APIs.

A MIDlet can divide its permissions into critical and
optional. Critical permissions are necessary for the MIDlet to
operate at all. Optional permissions are noncritical and the
MIDlet can operate without them, although with reduced
capabilities. User permissions can also be divided into sub-
sets. Blanket permissions are valid for every invocation of an
API by a MIDlet suite, until the suite is removed or the user
changes the permission. Session permissions are valid only
until the MIDlet suite terminates and must be renewed for
each invocation of the suite. One-shot permissions must be

confirmed by the user for every invocation of the protected
API.

The new security model in MIDP 2.0 provides not only for
network security, but also for protection of the device. With
secure HTTP and network connections, transmitted data is
encrypted to protect it from prying eyes and network scan-
ners. Inside the device, MIDlet authorization allows sensitive
data and secure capabilities to be protected from unautho-
rized use. Together these new capabilities provide much-
enhanced protection for both the mobile device and the user’s
data.

User Interface
The MIDP 1.0 user interface is quite limited, in keeping

with the limited capabilities of the hardware it was expected to
run on as well as the wide range of devices the MIDlets must
run on. MIDP 2.0 recognizes that mobile device hardware is
becoming more powerful with larger screens, faster proces-
sors, and more memory. The MIDP user interface compo-
nents (LCDUI) have been extended and enhanced to take
advantage of this increased power.

One limitation in MIDP 1.0 is that it’s not possible to spec-
ify the display positions for Items. The reason for this is that
because display sizes change so much in mobile devices, the
MIDP 1.0 Expert Group decided the mobile device was the
best authority for deciding how to lay out content. As a result,
it’s left to the implementation to place things on screen as best
it can, which doesn’t always result in a pleasing screen display.

To solve this problem, the Form and Item classes in
MIDP 2.0 have been enhanced with a set of layout direc-
tives. Items can now be assigned horizontal and vertical lay-
out values, affecting where their containing Form will dis-
play them. Developers can also now specify that a line break
should appear before or after an Item, as well as whether an
Item should be shrunk or expanded to help it fit in a partic-
ular position. In addition, the appearance of a StringItem or

ImageItem can be specified: they can take an appearance
value of Plain, Hyperlink, or Button. Two other changes have
been made to Items: they can have commands added to
them and programmers can now specify minimum and pre-
ferred sizes to display the Item. The minimum size is the
smallest size at which the Item can function, and the pre-
ferred size is the smallest size that allows the entire Item to
be displayed (with no clipping and a minimum of wrap-
ping).

Another limitation of the 1.0 user interface classes is that
they’re not extensible. Developers are limited to the items
defined by the specification and can’t easily create new types
of user interface widgets. MIDP 2.0 solves this problem by
introducing a new class, CustomItem, as an extension of the
LCDUI’s Item class. A CustomItem can be subclassed to create
new visual and interactive elements for Forms. These sub-
classes are responsible for responding to user interaction
events such as pointer actions or key presses. They must also
define the visual appearance of their content, including siz-
ing, rendering, colors, fonts, and graphics. (The visual appear-

H
om

e
J2

E
E

J2
SE

J2
M

E

“In real life, HTTPS is a
requirement for any application that

expects to send secure information
to a Web site

“

57NOVEMBER 2002

Java COM

esri
www.esri.com

Java COM

58 NOVEMBER 2002

Java COM

ance of the CustomItem’s label and border are handled by the
implementation.) Finally, they’re responsible for calling
Item.notifyStateChanged() to notify listeners when their state
changes.

Like other Items, CustomItems have the concept of mini-
mum and preferred sizes that define the area needed by the
entire Item. They add the concept of content size – the size of
the content contained by the CustomItem (not including bor-
ders and label). The CustomItem subclass is responsible for
handling events and displaying data in the area defined by the
content size. The CustomItem subclass can support one or
more of the user interaction modes defined by the Form on
which it is displayed, but it’s not required to support all possi-
ble interactions.

Finally, MIDP 2.0 introduces a new subclass of Item called
a Spacer. This is a simple display element that’s noninterac-
tive. It allows a programmer to define its minimum height and
width, making it useful for adjusting spacing between visual
elements in a Form or for defining a minimum height for a
row. A Spacer’s label must always be null, and an application
cannot add Commands to a Spacer.

Games
Games have been one of the driving applications on MIDP

devices so far, but MIDP 1.0 provides little support specifical-
ly for game developers. Everything has to be done with the
bare-bones MIDP 1.0 graphics functions, making game devel-
opment much more difficult than it needs to be. The Expert
Group that defined the MIDP 2.0 specification listened to the
desires of the game developers and added classes to the spec-
ification to simplify game development and speed up game
performance on most devices.

The gaming classes begin with a new subclass of Canvas
called GameCanvas. In addition to the standard Canvas func-
tions, GameCanvas allows synchronous graphics flushing and
provides methods for checking the state of the game keys.

This provides the basis for a game user interface.
A new abstract class called Layer allows the creation

of game visual elements to be displayed on the
GameCanvas. The Layer class has two defined sub-

classes: Sprite and TiledLayer. The TiledLayer class lets the
developer create background and relatively fixed display
objects. The Sprite class can be used to create animated fore-
ground objects. Since a game may have several Layer sub-
classes (e.g., multiple Sprites moving in front of a TiledLayer
background), a LayerManager class simplifies and automates
the rendering process to display the Layers, making it easier
for developers to define and maintain the foreground-to-
background display order.

A Sprite is a Layer subclass that can be rendered from one
of several identically sized frames stored in an Image. These
frames can be displayed in sequence to animate the image.
The Sprite’s location can be changed, and it can be made visi-
ble or invisible. It can also be flipped and rotated about the
horizontal and vertical axes. Sprites can detect collisions with
Images, TiledLayers, and other Sprites.

A TiledLayer is a subclass of Layer that defines a grid of
cells that can be filled with a set of tile images. This allows a
developer to create a game background by combining ele-
ments from the tile images, rather than by using a large
Image object. The tiled images are provided in a single Image
object, and the tile size is specified along with the Image. A
developer can also define animated tiles, which are groups of
tiles associated with a single tile image. Just changing the
image in the single tile can change all the tiles in the associ-
ated group.

The LayerManager class is used to simplify the display
of the various Layer subclasses that make up a game. It
maintains an ordered list of Layers that defines the display
order, and provides a view window that lets the developer
control the size of the visible region and its position relative
to the LayerManager’s coordinate system. In addition to
controlling the view window’s position in this system, the
developer can also provide an offset for its position on the
physical screen to make room for game controls or status
displays.

Sound
Besides the display components, a major component for

many applications is sound. People like to hear as well as see
things happen. In some games, music is used to heighten ten-
sion or set a mood. Sounds and music can also be used by
other applications, such as music players, or for distinguish-
ing various types of event notifications. Unfortunately, the
first MIDP release could not generate sounds except for pre-
defined alerts. The JSR118 Expert Group addressed that prob-
lem in MIDP 2.0 and expanded the range of sound possibili-
ties.

One complicating factor for this was the JSR135 Mobile
Media API, which includes sound APIs in its scope. The JSR118
team was careful to define a set of sound APIs and functions
that would be compatible with JSR135 in order to maintain
upward compatibility with the more complex Mobile Media
API. In keeping with this goal, the Expert Group defined an
API set that allowed tone generation and audio playback while
remaining protocol and content-format agnostic and using a

minimal amount of resources.
The resulting specification defines three main parts:

1. A Manager controls the audio resources available on the
device.

2. Applications use the Manager to request Players, and to
query for the audio device’s capabilities.

3. A Player is responsible for actually playing the audio con-
tent, and a Control interface exposes the different controls
that a Player might have.

MIDP 2.0 also defines a PlayerListener interface for receiv-
ing asynchronous events generated by Players.

These APIs can be used in two ways: an application can use
the Manager and/or Player classes to generate and play a sin-
gle tone or a tone sequence, or the Player class can be used to
play back sampled or synthesized sound formats.

H
om

e
J2

E
E

J2
SE

J2
M

E

“The Expert Group that defined the

MIDP 2.0 specification listened to
the desires of the game developers

and added classes to the specification

“

59NOVEMBER 2002

Java COM

qualcomm
qualcomm.com

The specification also defines two interfaces to control vol-
ume and tone generation. The ToneControl interface enables
playback of a user-defined monotonic tone sequence, and the
VolumeControl interface allows an application to manipulate
the audio volume of a Player.

Application Downloading
Shortly after the first MIDP specification was released, a

supplementary document came out describing recommend-
ed practices for Over-the-Air (OTA) provisioning of MIDlets to
mobile devices. Although OTA downloading is optional for
MIDP 1.0 devices, it’s mandatory for MIDP 2.0. The Expert
Group adopted the OTA provisioning method defined in the
recommended practices document with minor changes. The
MIDP 2.0 specification requires that devices be capable of dis-
covering and downloading applications using the HTTP 1.1
protocol. Devices that communicate using the WAP June 2000
protocol must use an intermediate gateway to communicate
with the HTTP provisioning server. Although HTTP provision-
ing is required, devices may also use other methods for down-
loading MIDlets, including iRDA, serial, or Bluetooth tech-
nologies.

Pushy, Pushy, Pushy
One of the great advantages of mobile devices is their abil-

ity to monitor some process (even if it’s just the passage of
time) and notify the user that an event has happened. The
ability to receive unexpected communications and act on
them is especially useful. Early J2ME devices could not do this
because the first MIDP specification had no provision for
receiving unexpected communication events. Their commu-
nications model was essentially that of a Web browser, react-
ing to user input and initiating communications only when
the user wanted to.

The PushRegistry class in MIDP 2.0 changes all that. This
new class maintains a list of inbound connections.
A MIDlet can register a set of connections in two
ways. When it is first loaded, its descriptor file
must notify the Application Management
Software (AMS) that it requires certain connec-

tions in order to run. If the connections are available, the
AMS will register them. If the connections are not available,
the AMS must abort the loading and notify the user that con-
flicts exist that prevent the MIDlet from being installed. Once
a MIDlet is installed, it can register additional push connec-
tions using the dynamic registration methods in the
PushRegistry. Once registered, the MIDlet has exclusive use
of a connection.

Responsibility for registered connections is shared
between the AMS and the MIDlet. A MIDlet that’s running is
required to handle all the communications on its registered
connections. When the application is destroyed, the AMS
assumes the responsibility of listening for inbound connec-
tions and starting the registered MIDlet when data is received.
Whatever data was received is then passed on to the MIDlet,
which assumes responsibility for the connection.

Communication Options
The first version of the MIDP specification required only

that HTTP connections be supported, and so defined only
an HttpConnection class. Experience has shown that addi-
tional connectivity is very desirable, so MIDP 2.0 defines
several optional (but highly recommended) connection
interfaces. These include the UDPDatagramConnection,
SocketConnection, ServerSocketConnection, and Secure-
Connection. None of these are required in a compliant
MIDP 2.0 implementation, but they should be implemented
if possible.

The UDPDatagramConnection provides applications the
opportunity to use UDP Datagrams for sending and receiving
messages whose delivery is not guaranteed by the underlying
network stack. The SocketConnection provides stream con-
nections to specified hosts and ports without specifying a par-
ticular protocol. ServerSocketConnections allow an applica-
tion to open a stream waiting for inbound connections, and
the SecureConnection interface extends the Socket-
Connection to provide SSL connections for data streams.

In addition to these network connections, MIDP 2.0
defines a serial communication interface, the Comm-
Connection, which defines a logical serial port connection.
The logical serial port used by this connection is defined by
the underlying host platform and may not correspond to a
physical RS-232 serial port.

Conclusion
The MIDP 1.0 specification was a good first attempt at

defining a subset of Java that could run on very restrictive,
limited-hardware devices. Experience rapidly showed that
additional features were needed to improve the capabilities
of Java MIDlets intended for these devices. MIDP 2.0
addresses those needs and recognizes the greater functional-
ity of newer cell phones and other small mobile devices.
Increased networking capabilities, enhanced user interface
classes, and a host of other improvements provide a more
robust, full-featured programming environment that
enables application developers to create better applications
more easily. At the same time, more powerful security fea-

tures protect the user’s data from inappropriate use and per-
mit sensitive data to be exchanged safely with remote
servers. With MIDP 2.0, small mobile devices can become
fully functional mobile data systems, enabling their users to
stay connected wherever they go.

• • •
For more information on the specification, the companies,

and the people involved in developing it, please visit
http://jcp.org/jsr/detail/118.jsp.

AUTHOR BIO
Roger Ritter is a programmer and developer support specialist for Motorola, Inc. He supports
mobile device manufacturers who are porting Motorola’s J2ME implementation to their own
products.

roger.ritter@motorola.com

60 NOVEMBER 2002

Java COM

H
om

e
J2

E
E

J2
SE

J2
M

E

“With MIDP 2.0, small mobile
devices can become fully functional mobile

data systems, enabling their users to stay
connected wherever they go

“

hit
www.hit.com

Java COM

62 NOVEMBER 2002

As most Java developers know, the stan-
dard GUI components provided with the Java
platform are barely adequate for most appli-
cations. We’ve all had to extend the base
Swing (JFC) components and AWT compo-
nents to develop the rich user interface
components that users expect today.
Today’s sophisticated users expect more
interactive, intuitive GUI components to
be available in their applications.

Swing was a good start but it lacked
many of the common features that users
have come to expect in a Windows
world. Swing offers a good framework
but the default implementations are
lacking robust capabilities such as
masked field entry, maximum length
entry, standard popup components
such as date selectors and calculator
pads, and the list goes on. Of course, it
should be understood that Sun was
providing a base implementation that a
company like Infragistics could build
on and create GUI components that not
only met users’ expectations but sur-
passed them. Even those same users
who once tolerated HTML form con-
trols within a browser are now demand-
ing richer Web-based GUI components
in the form of Java applets and Sun’s Java
Web Start protocol. JSuite 6 from
Infragistics, a company that provides cut-
ting-edge client-side and server-side
components, meets this challenge. This
product contains a class of Enterprise-
level, Java-based visual components for

application client development, server-side
components for server-side utility opera-

tions, and a broad set of client-side chart
components that will satisfy the demands of

today’s business user community.

JSuite 6
JSuite 6 is a suite of

client-side visual compo-
nents and server-side
data/utility components
for Java-based applications
or applets. The suite of
components integrates eas-
ily with the most popular
Java IDEs such as JBuilder,
WebGain (formerly Visual
Café), and VisualAge. JSuite
6 includes multiple ver-
sions of their visual compo-
nents that work best with
the type of application
you’re developing. They
offer AWT, Swing, and
bean-based components.
Whether you’re working
with a Swing-based client
application or an applet-
based Web application,
JSuite 6 will satisfy all your

visual component needs. It offers compo-
nents that fulfill the following visual compo-
nent categories required in most sophisticat-
ed client applications:
• Editing components such as combobox

(image/text dropdown), currency, date edit,
mask edit, numeric, password, and static
text

• Date-based components such as Calendar,
DayView, WeekView, and DateEdit with
dropdown calendars; advanced features
include appointment scheduling with syn-
chronization between all date-based com-
ponents and DayView (with multiple lines
and images per appointment)

• Advanced table component that provides a
view to complex back-end data models and
allows for easy user interaction with the
underlying data model

• Advanced tree component that offers many
utility functions that are often very burden-
some for the developer, such as drag-and-
drop functionality

• Rich data-driven components to allow easy
navigation of hierarchical data structures
using an Explorer-style interface or Gantt
chart interface

Other powerful tools available in the JSuite
6 tool chest are:
• PowerChart, a powerful 2D/3D chart-ren-

dering component for client applica-
tions/applets

• Utilities for common user interface opera-
tions such as color picker and customizable
buttons

• Data model adapters to handle numerous
back-end data needs such as JDBC, XML,
text, or binary

With JSuite 6, a Java developer can get
down to the business of providing a business
solution quickly.

info
REVIEWED BY PAUL FREY paulfrey@yahoo.com

JSuite
L

ab
s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by Infragistics Corporation

6.0
Infragistics Corporation
Windsor Corporate Park
50 Millstone Road
Building 200 - Suite 150
East Windsor, NJ 08520
Phone: 800-231-8588
Web: www.infragistics.com

Specifications
Platforms: Any platform supported by
JDK 1.1 through 1.4 (there are older ver-
sions of the components included for
older versions of the JDK as well)
Pricing: $795 (includes PowerChart
Server Edition)
$995 with annual subscription – a year’s
worth of updates, upgrades and new
products (includes source code)
$1,495 Enterprise Edition – product, sub-
scription, as well as guaranteed priority
support

Test Platform
Gateway GP7-600, 600 MHz Intel Pentium
III processor, 80GB disk, 512MB RAM,
Windows NT with Service Pack 6a

FIGURE 1 JSuite 6 components in IDE

STEP-UP
to the mic

and be...

HEARD!

ATTN: Developers

Go to
http://developer.sys-con.com

Calling Sleek
Geeks Everywhere!

Make sure you have your finger on
the pulse of i-Technology...bookmark

http://developer.sys-con.com today.

i-Technology

News
i-Technology

Views
i-Technology

Comment
i-Technology

Debate
© COPYRIGHT 2002, SYS-CON MEDIA WWW.SYS-CON.COM

Java COM

64 NOVEMBER 2002

P R O D U C T R E V I E W

JSu
ite

 6.
0 b

yI
nfr

agi
stic

s C
orp

ora
tio

n
L

ab
s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

Installing and Using JSuite 6
Infragistics offers JSuite 6 in a downloadable format. A CD

key is provided to you upon successful purchase from their
Web site. For those developers who wish to extend its compo-
nents and need to know the internals, the source can be pur-
chased as well. I downloaded the JSuite 6 self-extracting instal-
lation file and ran it trouble-free on a Windows NT workstation.

I opened up the JSuite Help that was created during the
installation process and followed the directions for integrating
the JSuite components with my preferred IDE, JBuilder.
Integrating the JSuite components into JBuilder’s component
palette was as simple as integrating any third-party compo-
nent library. Simply add a new tab on the component palette
for “Infragistics” and associate this tab with the JSuite compo-
nent JAR files located in the JSuite 6 installation’s subdirectory,
jsuite/jars. JSuite 6 icons will then be copied to JBuilder’s com-
ponent palette for use in the JBuilder designer.

From this point, using the components is the same as using
any other Swing/AWT component in your IDE’s designer. Just
drag and drop the JSuite component you wish to use onto your
application’s panels. There are also numerous sample applica-
tions/applets source code to help you understand how to use
each JSuite visual component and nonvisual component.

Using JSuite 6 from within an application was simple and
intuitive. I was able to create a daily planner application in just
minutes using its calendar components. The only code I had
to write was the synchronization code for the components to
capture the “add appointment” events. In Figure 1, the
JPVWeek calendar component was dragged from the JBuilder
component palette and dropped on the application’s panel in
the designer. The properties associated with the JSuite compo-
nents are documented in the JSuite 6 Help under the “How To”
section and the JavaDocs are included as well.

I found the JSuite calendar components to be user friendly.
Adding an appointment was handled through the calendar com-
ponents by displaying a popup appointment dialog, supplied by
JSuite (see Figure 2). The user can display the appointment dialog
by clicking a popup indicator, and can resize (shorten or lengthen)
an appointment by positioning the mouse cursor over the bottom
edge of the appointment and dragging it in either direction (see
Figure 3).

JSuite 6 provides Java developers with a vast array of
almost every visual component they will need when
developing professional client applications. I’m unable
to cover all the components in the space of this review.
However, Infragistics supplied ample precompiled,
ready-to-run applications that demonstrate all the visu-

al and nonvisual components available in JSuite 6. I went
through each one of these samples and found that nearly every
feature demanded of me during my past Java client application
projects could have been satisfied and exceeded with JSuite 6. I
haven’t gone into the nonvisual components in great detail, but
I think many Java developers who ever wrote code using Java’s
JTable component with an XML or JDBC data source will appre-
ciate JSuite’s JPVTable component and its data model adapters,
JPVXMLAdaptor and JPVJDBCAdaptor.

Summary
When it comes to Java client-side application development,

Infragistics’ JSuite 6 offers one of the most comprehensive suites
of visual components available in the Java third-party visual
component market. I was impressed with the Rapid Application
Development (RAD) qualities the suite delivered. I would have
liked to see better integration with JBuilder’s IDE designer prop-
erties panel. Often I had to refer to the JavaDoc for the JSuite 6
component to determine the proper property settings. A popup
editor would be helpful. In today’s highly competitive business
environment, an impressive front end is as important as the
business-driving back end. Project managers will appreciate the
return on investment (ROI) benefits of using a mature, full-fea-
tured visual component library like JSuite 6. If you are a Java
developer looking to shorten your development cycle and
improve your client application’s usability and visual appeal,

you’ll want to add Infragistics’ JSuite 6 to your toolkit.

FIGURE 2 Popup appointment dialog

FIGURE 3 Resizing an appointment

JDJ Product Snapshot
Target Audience: Java developers and business analysts
Level: Beginner to advanced
Pros: Easy integration with IDEs, customizable rich set of
components with intuitive built-in behavior, helpful and full-
featured samples, back-end data adapters that will improve
data acquisition, PowerChart components included
Cons: Need more examples in the “How To” help section
(although scanning the sample code did answer many of
my questions)

65NOVEMBER 2002

Java COM

isavvix
www.isavvix.com

Java COM

66 NOVEMBER 2002

The latest version of Adaptive Server
Anywhere (ASA) marks a major turn-
ing point in the history of this prod-

uct. Prior to version 8 the most important
design goals were ease of use, small foot-
print, and cross-platform support, with
high speed taking a back seat. This time,
improved performance is the number one
new feature. And the results? Mostly good,
sometimes uneven, getting better fast.

Product Description
ASA is an affordable relational data-

base management system that ships as
part of the SQL Anywhere Studio package
from iAnywhere Solutions, a subsidiary of
Sybase. ASA supports all the features you
expect from a modern RDBMS, including
ANSI standard SQL, multiuser network
connectivity, multiprocessor support,
transaction commit and rollback, row-
level locking, referential integrity, BLOBs,
events and triggers, and stored procedures.

Installation and Setup
Installation of SQL Anywhere Studio

on a Windows platform uses a straight-
forward InstallShield setup. A full devel-
oper’s installation requires about 120MB
disk space in one place under
C:\Program Files\Sybase\SQL Anywhere
8. Multiple versions (5, 6, 7, 8) can coexist
and even run together on the same
machine. In other words, an ASA installa-
tion doesn’t take over your machine or get

in the way of other products, even database
servers from other vendors.

New Features
There’s good news and bad news, and it’s

all part of the same story: the query optimizer
and execution engine have been completely
rewritten. These are the runtime components
that analyze your SQL commands and pick
from among the thousands of different possi-
ble “plans” of execution. They were rewritten
for three reasons: to support improvements in

the database file structure,
to support future SQL

enhancements, and to make queries run
faster.

The good news is that most queries do run
faster, sometimes much faster. In a series of
tests I ran against an old application, the
improvements ranged from a few percentage
points to 75% faster. Other people have report-
ed queries running up to 10 times faster. Full
table scans are no longer the problem they
once were, sometimes running faster than
index searches. Queries that need temporary
tables are also faster, and indexes using wide
columns such as “last_name, first_name” ben-
efit from a new storage scheme. The bottom
line is you don’t have to work so hard to opti-
mize SQL commands; the server will do it for
you.

The bad news is that improvements aren’t
guaranteed. A rewrite brings behavior
changes, and in some rare cases queries actu-
ally run slower on version 8. These “queries
from hell” are being dealt with as they turn
up; I know this for a fact, having reported
some of my own nasty SQL.

There’s a do-it-yourself fix for most of the
performance disappointments, however. Just
change a database option with this command
in interactive SQL:

SET OPTION PUBLIC.Optimization_goal =

'All-rows';

This tells the server to pick execution
plans that favor the retrieval of entire result
sets. This option didn’t matter in earlier ver-
sions of ASA, but now it’s critically important.
The current default value “First-row” is wrong
for most applications and it’s going to be
changed to “All-rows” in 8.0.2.

Sometimes, however, it’s up to you to make
a SQL statement run faster. For example, an
index on “last_name, first_name” won’t help a
search on first name (try finding all the
“Susans” in the phone book). In these situa-
tions there’s nothing ASA or any other database
server can do without your help, and that’s
where the new graphical plan display comes in.

Figure 1 shows a SELECT where two tables
are being scanned sequentially. The graphical

plan shows how the server handles
the query, including estimated and
actual runtime statistics, giving you
more than enough information to
help make decisions about indexes
and other improvements.

The graphical plan is interactive:
it lets you pick the main select and
subqueries for display, and click on
individual nodes in the plan to see
the details in the right-hand panel or
a popup box. You can even save the
graphical plan in an XML file for later
display without connecting to the
database, a real time-saver when
you’re dealing with distributed data-

info
REVIEWED BY BRECK CARTER bcarter@risingroad.com

Adaptive
Server
Anywhere
Version 8

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by i Anywhere Solutions

iAnywhere Solutions
Web: www.ianywhere.com
Phone: 800 801-2069

Test Platforms
Windows 95/98/Me/NT/2000/XP/CE,
Netware, Compaq Tru64 Unix, IBM
AIX, HP-UX, Sun Solaris, Caldera,
Mandrake, Red Hat, SuSE,
TurboLinux, Windows 98, and
Windows 2000

Pricing
SQL Anywhere Studio 8.0
(Developer Edition) $399

67NOVEMBER 2002

Java COM

nary
ww.nary.com

Java COM

68 NOVEMBER 2002

P R O D U C T R E V I E W

bases or you need someone else’s advice about opti-
mization.

Version 8 also comes with a new execution profil-
er to help you find slow SQL statements. Experience
shows that a few statements take up a lot of the time
in most applications. Not only that, but it’s almost
impossible to predict which statements will be the
slow ones.

The execution profiler lets you
find the troublemakers inside stored
procedures, even inside triggers and
user-defined functions called from
other statements.

Figure 2 shows an example in
which 45% of the total time was
spent executing a single DELETE
statement. Hundreds of other state-
ments took almost no time to exe-
cute, so no matter how efficient or
inefficient they were, they didn’t
need attention. Just this DELETE

Ad
apt

ive
 Se

rve
r A

nyw
her

e b
yi

An
yw

her
e S

olu
tio

ns
L

ab
s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

FIGURE 2 Execution profiler

FIGURE 1 Details of query execution plan

JDJ Product Snapshot
Target Audience: Programmers, database administrators
Level: Beginner to advanced
Pros:
• Improved performance
• Graphical plan display
• Execution profiler
• Strong database and communication encryption
• Java 2 and JDBC 2 support
• Newsgroup and customer support
Cons:
• Market perception as a small database-only product

FIGURE 3 Result set editor in ISQL

that turned out to be unnecessary:
it removed temporary data stored in a permanent table. A simple design
change to use a temporary table eliminated the need for the DELETE alto-
gether.

The speed and usability of the Java-based administrative tools Sybase
Central and Interactive SQL have been greatly improved. The native C version
of ISQL still ships with the product, but only the Java tools have cool features
like the two new editors for queries and result sets. Figure 3 shows a join of two
tables where you can edit and save changes to the database. You can insert,
delete, and update rows; copy and paste to and from columns; and confirm or
cancel each change – all without writing any code other than a SELECT.

Summary
The performance improvements in version 8 are moving ASA into the

world of enterprise databases. ASA is inexpensive and easy to administer,
as well as being developer-friendly – a viable alternative to Oracle, SQL
Server, DB2, and ASE.

north
woods

.com

Smart strategies can succeed
even in the toughest of times...
The 2002 Inc 500 reveals a surprising resiliency within the entrepreneurial sector, where leading companies are
continuing to show dramatic rates of growth despite the recession. “This is the first Inc 500 ranking to reflect
the full impact of the recession,” said Inc editor John Koten. “Yet these entrepreneurs are managing to con-
found the naysayers and move ahead despite obstacles. They are showing that smart strategies can succeed
even in the toughest of times.”

SYS-CON’s revenue and earnings have grown dramatically since its inception in 1994. From 1998 to 2001, rev-
enue grew at a compound annual growth rate of 72.9%. For the same period, gross margin increased at a
CAGR of 75.7%. This year, as of October 2002, adjusted annual EBITDA will increase 57.7% to new record earn-
ings. In 2003, the company projects its gross margin to increase 51.9% and the contribution is projected to
increase 70.4%, which will keep SYS-CON in an impressive growth pattern for 2002, 2003 and beyond.

As a result of this impressive growth, SYS-CON Media has been recognized three times by Inc 500, twice
named by Deloitte & Touche to its “Technology Fast 50” award and is expected to be named this year to
Deloitte & Touche’s “Technology Fast 500” award, which honors the 500 fastest growing technology compa-
nies in the United States and Canada, both among public and privately held corporations.

For more information
please visit www.sys-con.com

2003200220012000199919981997199619951994

SYS-CON Media
Annual Revenue Growth

1994–2002
2003 est.

For the Third Year...

2002
WINNER

2001
WINNER

1999
WINNER

2002
WINNER

2002
WINNER

2001
WINNER

www.SYS-CON.com The World’s Leading i-Technology Publisher

From 1998 to 2001, revenue grew at a
compound annual growth rate of 72.9%.

Java COM

70 NOVEMBER 2002

BEST JAVA BOOK
Winner: Java Message Service
by Richard Monson-Haefel and David A. Chappell
from O’Reilly & Associates
1st Runner-Up: J2EE Applications and BEA WebLogic Server
by Michael Girdley, Rob Woollen, and Sandra L. Emerson
from Prentice-Hall
2nd Runner-Up: Core J2EE Patterns: Best Practices and Design Strategies
by Deepak Alur, Dan Malks, and John Crupi
from Prentice-Hall
3rd Runner-Up: Java in a Nutshell by David Flanagan
from O’Reilly & Associates

BEST DATABASE TOOL OR DRIVER
Winner: Oracle9i Business Components for Java
from Oracle
1st Runner-Up: XML Spy Suite 4.2
from Altova
2nd Runner-Up: Oracle9iAS TopLink
from Oracle
3rd Runner-Up: MM.MySQL JDBC Driver
from MySQL AB

BEST ENTERPRISE DATABASE
Winner: Oracle9i Database
from Oracle
1st Runner-Up: IBM DB2 Universal Database v7.2
from IBM
2nd Runner-Up: Borland JDataStore
from Borland Software Corp.
3rd Runner-Up: MySQL
from MySQL AB

BEST J2EE IDE
Winner: IBM WebSphere Studio Application Developer 4.0
from IBM
1st Runner-Up: Forte for Java/NetBeans
from Sun Microsystems
2nd Runner-Up: Oracle9i JDeveloper
from Oracle
3rd Runner-Up: Borland JBuilder
from Borland Software Corp.

BEST J2ME IDE
Winner: IBM VisualAge Micro Edition
from IBM

1st Runner-Up: Oracle9i JDeveloper
from Oracle
2nd Runner-Up: Borland JBuilder MobileSet
from Borland Software Corp.
3rd Runner-Up: CodeWarrior for Java
from Metroworks

BEST J2SE IDE
Winner: Oracle9i JDeveloper
from Oracle
1st Runner-Up: Borland JBuilder
from Borland Software Corp.
2nd Runner-Up: Forte for Java/NetBeans
from Sun Microsystems
3rd Runner-Up: IntelliJ IDEA
from JetBrains, Inc.

BEST JAVA APPLICATION
Winner: Oracle9i JDeveloper
from Oracle
1st Runner-Up: Borland JBuilder
from Borland Software Corp.
2nd Runner-Up: BEA WebLogic Server 7.0
from BEA
3rd Runner-Up: IntelliJ IDEA
from JetBrains, Inc.

BEST JAVA APPLICATION SERVER
Winner: BEA WebLogic Server 7.0
from BEA Systems
1st Runner-Up: IBM WebSphere Studio Application Server 4.0
from IBM
2nd Runner-Up: Oracle9i Application Server
from Oracle
3rd Runner-Up: JBoss
from jboss.org

BEST JAVA CLASS LIBRARY
Winner: The Java Collections Framework
from Sun Microsystems
1st Runner-Up: Oracle9i JDeveloper – BC4J BI Beans
from Oracle
2nd Runner-Up: Host Access Class Library
from IBM
3rd Runner-Up: Eclipse
from Eclipse Technology, Inc.

J2
SE

H
om

e
J2

E
E

J2
M

E
Widely referred to as the

“Oscars of the software industry,”

the JDJ Readers’ Choice Awards pro-

gram has become the most respected

industry competition of its kind.

The polls were open for just under a year,

from November 6, 2001, through September 23,

2002, and no fewer than 30,000 Java Developer’s

Journal readers cast their votes. The total number of

award nominations also reached a new record high, with

more than 180 companies nominating over 705 products in 29

different award categories. That is seven more categories than last

year, and the new ones reflect emerging trends in the Java space,

such as “Best Wireless Java Application” and “Best XML Tool.”

Java Developer’s Journal Readers’ Choice Award recipients are selected

through reader-submitted nominations, followed by online voting. An independ-

ent research firm manages the voting process.

sys-con media
www.sys-con.com

72 NOVEMBER 2002

Java COM

BEST JAVA COMPONENT
Winner: ILOG JTGO
from ILOG, Inc.
1st Runner-Up: Oracle Business Components for Java
from Oracle
2nd Runner-Up: BEA WebLogic Portal
from BEA
3rd Runner-Up: Sitraka JClass
from Sitraka

BEST JAVA DATA ACCESS TOOL
Winner: Oracle Business Components for Java
from Oracle
1st Runner-Up: XML Spy Suite 4.2
from Altova
2nd Runner-Up: Oracle9iAS TopLink
from Oracle
3rd Runner-Up: CA Advantage EDBC for Java Data Access
from Computer Associates

BEST JAVA DEVELOPER STUDIO
Winner: Together ControlCenter 5.5
from TogetherSoft
1st Runner-Up: IBM WebSphere Studio Application Developer 4.0
from IBM
2nd Runner-Up: Oracle9i JDeveloper
from Oracle
3rd Runner-Up: Borland Enterprise Studio for Java
from Borland Software Corp.

BEST JAVA EAI PLATFORM
Winner: IBM WebSphere MQ
from IBM
1st Runner-Up: Oracle9i Application Server
from Oracle
2nd Runner-Up: BEA WebLogic Integration
from BEA
3rd Runner-Up: SonicXQ 1.0
from Sonic Software Corp.

BEST JAVA E-BUSINESS FRAMEWORK
Winner: IBM WebSphere
from IBM
1st Runner-Up: Oracle9i JDeveloper with Business Components for Java
from Oracle
2nd Runner-Up: BEA WebLogic Server 7.0
from BEA
3rd Runner-Up: Borland JBuilder
from Borland Software Corp.

BEST JAVA IDE ENVIRONMENT
Winner: IBM WebSphere Studio Application Developer 4.0
from IBM
1st Runner-Up: NetBeans
from Sun Microsystems
2nd Runner-Up: Oracle9i JDeveloper
from Oracle
3rd Runner-Up: Borland JBuilder
from Borland Software Corp.

BEST JAVA INSTALLATION TOOL
Winner: InstallAnywhere
from Zero G Software
1st Runner-Up: InstallShield MultiPlatform
from InstallShield
2nd Runner-Up: Java Message Queue
from Sun Microsystems

3rd Runner-Up: Sitraka DeployDirector
from Sitraka

BEST JAVA MESSAGING TOOL
Winner: IBM WebSphere MQ
from IBM
1st Runner-Up: Oracle9i Application Server
from Oracle
2nd Runner-Up: SonicMQ 4.0
from Sonic Software Corp.
3rd Runner-Up: BEA WebLogic Server 7.0
from BEA

BEST JAVA MODELING TOOL
Winner: MagicDraw UML 5.0
from No Magic, Inc.
1st Runner-Up: Oracle9i JDeveloper
from Oracle
2nd Runner-Up: Rational Rose Professional J Edition
from Rational Software Corp.
3rd Runner-Up: Together ControlCenter 5.5
from TogetherSoft

BEST JAVA PROFILING TOOL
Winner: Oracle9i JDeveloper
from Oracle
1st Runner-Up: Metameta Debug Enterprise
from Metameta
2nd Runner-Up: IBM VisualAge Micro Edition – MicroAnalyzer
from IBM
3rd Runner-Up: Borland Optimizeit Suite 4.11
from Borland Software Corp.

BEST JAVA REPORTING TOOL
Winner: StyleReportEE
from InetSoft Technology Corp.
1st Runner-Up: Oracle9iAS Reports/Discoverer
from Oracle
2nd Runner-Up: Together ControlCenter 5.5
from TogetherSoft
3rd Runner-Up: JReport
from Jinfonet Software

BEST JAVA TESTING TOOL
Winner: Borland Optimizeit Suite 4.11
from Borland Software Corp.
1st Runner-Up: Oracle9i JDeveloper
from Oracle
2nd Runner-Up: JUnit
from Object Mentor, Inc.
3rd Runner-Up: Rational Suite TestStudio
from Rational Software Corp.

BEST WIRELESS JAVA APPLICATION
Winner: IBM WebSphere Transcoding Publisher
from IBM
1st Runner-Up: Oracle9i Application Server
from Oracle
2nd Runner-Up: iAnywhere m-Business Studio
from iAnywhere Solutions, a Sybase company
3rd Runner-Up: COOL:Plex/Websydian
from Computer Associates

BEST XML TOOL
Winner: XML Spy Suite 4.2
from Altova
1st Runner-Up: IBM WebSphere Studio Application Developer 4.0

J2
SE

H
om

e
J2

E
E

J2
M

E

sys-con media
www.sys-con.com

Java COM

74 NOVEMBER 2002

from IBM
2nd Runner-Up: Oracle9i XDK
from Oracle
3rd Runner-Up: Borland JBuilder
from Borland Software Corp.

MOST INNOVATIVE JAVA PRODUCT
Winner: Together ControlCenter 5.5
from TogetherSoft
1st Runner-Up: IBM WebSphere Studio Application Developer 4.0
from IBM
2nd Runner-Up: Oracle9i Application Server with Advanced Clustering
from Oracle
3rd Runner-Up: Borland JBuilder
from Borland Software Corp.

BEST JAVA VIRTUAL MACHINE
Winner: Oracle9i JVM
from Oracle
1st Runner-Up: The J9 Virtual Machine
from IBM/Object Technology International
2nd Runner-Up: Java HotSpot Performance Engine
from Sun Microsystems
3rd Runner-Up: BEA WebLogic JRockit Server Side VM
from BEA

BEST TEAM DEVELOPMENT TOOL
Winner: MagicDraw UML 5.0 Teamwork Server
from No Magic, Inc.
1st Runner-Up: Oracle9i SCM
from Oracle
2nd Runner-Up: Borland JBuilder
from Borland Software Corp.

3rd Runner-Up: Rational ClearCase
from Rational Software Corp.

BEST MOBILE DATABASE
Winner: PointBase Micro 4.1
from PointBase
1st Runner-Up: Oracle9i Lite
from Oracle
2nd Runner-Up: Cloudscape
from IBM
3rd Runner-Up: Borland JDataStore
from Borland Software Corp.

BEST JAVA WEB SERVICES DEVELOPMENT TOOLKIT
Winner: IBM Web Services Toolkit
from IBM
1st Runner-Up: Oracle9i JDeveloper
from Oracle
2nd Runner-Up: Borland Web Services Kit for Java
from Borland Software Corp.
3rd Runner-Up: SonicXQ 1.0
from Sonic Software Corp.

BEST JAVA TRAINING PROGRAM
Winner: Java Productivity with JBuilder

from Borland Software Corp.

1st Runner-Up: Java BluePrints for Wireless Program

from Sun Microsystems

2nd Runner-Up: JCertify 5.0

from EnterpriseDeveloper.com

3rd Runner-Up: Struts Fast Track Public Training

from baseBeans Engineering

J2
SE

H
om

e
J2

E
E

J2
M

E

Java & Linux Focus – February 2003
Over 70,000 Untapped Linux Professionals

Call Today!
Carmen Gonzalez

(201) 802-3021
carmen@sys-con.com

Java Developer's Journal reaches over 70,000
Linux developers, hardware and software buyers,
and decision makers you’re not reaching via
any other publication in the market today!

...you’re not reaching today!

45%
 Readers:
Linux

55%

 Readers:
Sun Solaris,
UnixWare & OthersJDJ
JDJ ReaJDJ

Number of JDJ readers who
are professional Linux developers

The best-kept secret in the Linux community!

Please call for deadlines.

Don’t Miss JDJ’s Linux Focus Issue!
With a total reach that’s more than Linux Journal & Linux Magazine combined!

sys-con media
www.sys-con.com

Java COM

76 NOVEMBER 2002

�QUALCOMM Selects TIBCO’s
Integration Solution
(Palo Alto, CA) – TIBCO Software, Inc.,
has announced that QUALCOMM, Inc., a
provider of digital wireless communica-
tions products and services, has selected
TIBCO’s Business Integration Solution
for enterprise-wide integration.

QUALCOMM believes it will be able
to reduce integration expenses and
TIBCO’s solution will enable it to specify
integrations and gain access at various
levels of the same messaging technology.
www.qualcomm.com
www.tibco.com

�Communix Launches Provisioning
Solution for J2EE Application Servers
(London) – Communix Limited, a value-
added reseller of e-business infrastruc-
ture products and services, has
launched AppSynergy, a solution that
reduces the cost and time it takes to
procure, install, and configure best-of-
breed and leading-vendor J2EE applica-
tion server software on branded work-
station and server-class computers for
development, test, and production envi-
ronments.

AppSynergy also offers
product choice and flexi-
bility. Among the products
available are IBM
WebSphere, BEA
WebLogic, Oracle
Databases and Application
Server (9iAS), Borland
JBuilder and Enterprise
Server (BES), TogetherSoft
ControlCenter 6.0, and
Macromedia JRun 4.
www.communix.com

�IBM’s New Tools
Complete Web Services
Plunge
IBM has unveiled IBM
WebSphere Studio v5 (for-
merly VisualAge develop-
ment platform), an impor-
tant milestone in the com-
pany’s strategy to help its
customer base use Java
and Web services to unify
their legacy infrastructure.
It also cements tool sup-
port for key technologies
and standards, including
J2EE 1.3, the Apache Struts
framework, the Eclipse 2.0
tool framework, and the
latest versions of all the
Web services standards.
www.ibm.com

�Borland Signs Agreement
to Acquire Starbase
(Scotts Valley and Santa Ana, CA) –
Borland Software Corporation and
Starbase Corporation, a provider of soft-
ware configuration management tech-
nology, have signed a definitive agree-
ment in which Borland will acquire
Starbase in an all-cash tender offer for
an aggregate purchase price of approxi-
mately $24 million or $2.75 per share.
Starbase’s products will complement
and expand Borland’s suite of products.

The acquisition has been approved
by the boards of directors of Borland
and Starbase and is subject to custom-
ary closing conditions.
www.borland.com
www.starbase.com

�Macromedia Delivers Flash on Java
(San Francisco) – Macromedia has
unveiled a new version of its Flash
Remoting technology – which lets its Flash
technology run as a server-driven applica-
tion – that will run on any Java application

server. In addition to providing server
streaming of Flash content, it also provides
links to back-end business logic and data
stored on enterprise servers.

Flash Remoting supports Java objects
and JavaBeans, and J2EE resources includ-
ing Java classes, EJBs, and JMX MBeans. The
server is a pure Java implementation and
can be deployed on both J2EE and Java
application servers.
www.macromedia.com

�Sun Delivers Secure Mobile Access with
Sun ONE Portal Server
(Santa Clara, CA) – Sun Microsystems, Inc.,
has unveiled the Sun ONE Portal Server,
Secure Remote Access 6 product. It provides
an integrated, out-of-box alternative. Using
a standard Web browser, users can securely
access their portal (personalized and aggre-
gated applications, data, Web services, and
legacy information) from any location, such
as an Internet café, airport, or home.
www.sun.com

N
ew

s

J2
SE

H
om

e
J2

E
E

J2
M

E

SYS-CON MEDIA AWARDED
TOP HONORS BY INC 500
AND DELOITTE & TOUCHE

(Montvale, NJ) – SYS-CON Media has been
named one of the fastest growing 500 tech-
nology companies in North America by
Deloitte & Touche in its 2002 Technology
Fast 500. The announcement came one

week after SYS-CON was named one of the nation’s
fastest-growing private companies by Inc 500 for the
third time.

SYS-CON Media is widely recognized in the i-
technology and magazine publishing industries as
the world’s leading publisher of print magazines,
electronic newsletters, and accompanying Web por-
tals. The company has further solidified its dominant
role in the i-technology space with the 2000 launch of
an events business with trade shows, conferences,
and education seminars.

SYS-CON Media achieved a record 752% growth in
the past five years. The company’s revenue and earn-
ings have grown dramatically since its inception in
1994. From 1998 to 2001, revenue grew at a compound-
ed annual growth rate of 72.9%.
In 2003, the company projects
its gross margin to increase
51.9%, and the contribution is
projected to increase 70.4%,
which will keep SYS-CON in an
impressive growth pattern for
2002, 2003, and beyond.
www.sys-con.com

>

JAVANEWS>

ORACLE DELIVERS
PERSONALIZED JAVA
DEVELOPMENT TOOL

(Redwood Shores, CA) – Oracle Corp.
has announced the delivery of the

latest version of its Java Integrated Development
Environment (IDE) – Oracle9i JDeveloper version
9.0.3. This new release of Oracle9i JDeveloper fea-
tures four major areas of enhancement. Developers
can download the new tool directly from Oracle
Technology Network (OTN) to take immediate
advantage of full support for the latest J2EE 1.3 spec-
ifications; enhanced Web services support; built-in
integration with open-source tools; and the new
MyJDeveloper Extension Manager – a unique feature
that allows developers to personalize the develop-
ment environment to meet their exact project needs.

With full support for open-standards develop-
ment on any operating system, Oracle9i JDeveloper
provides complete development life-cycle support
for Java developers creating J2EE applications and
Web services. It offers built-in features for optimiz-
ing the performance of
Java applications while
providing a single IDE for
Java, XML, and SQL; busi-
ness intelligence; UML
modeling; and J2EE Web
services.
www.oracle.com

>

77NOVEMBER 2002

Java COM

Exclusive: Excerpts from JavaDevelopersJournal.com

JDJ MEETS... JEREMY ALLAIRE
ALAN WILLIAMSON interviewed Jeremy Allaire, CTO,

Macromedia, Inc., to get the rundown on how Java developers
can take advantage of JRun4, ColdFusion MX, and Flash
Remoting.

JDJ: With CFMX in the field for nearly three months now, what is
the adoption rate like?
Allaire: We’re seeing a lot of excitement about ColdFusion MX.
For existing users, the most attractive features of ColdFusion MX
have been the new component model and the ability to easily
work with XML and Web services. They’re also excited about the
possibility of running their ColdFusion applications on a Java
application server. For Macromedia, however, the best part of
this release is the interest we’re getting from people who haven’t
previously used ColdFusion. A lot of shops that have standard-
ized on J2EE are now looking at ColdFusion as a great way to do
rapid application development on their Java server, and the
Macromedia Flash development community is excited about
the way Macromedia Flash Remoting allows them to easily con-
nect their applications to a database.

JDJ: CFML has a reputation in the field for being too lightweight
for anything serious. How have you addressed this issue with the
Java community?
Allaire: There are two important sides to this question, and we
think ColdFusion MX addresses both. On the development

side, we’ve not only preserved the productivity and ease of use
of our scripting environment, but also introduced a powerful
new component model that makes it much easier to do struc-
tured development in ColdFusion. As a result, you can easily
implement advanced design patterns like MVC using the same
high-level scripting syntax that makes ColdFusion a great tool
for rapid application development. Moreover, we don’t restrict
you from using other languages. If there is something you
would rather develop in Java, that’s fine. You can easily reuse
that code from within ColdFusion – by calling the object
directly, sharing data with a servlet, or importing it as a tag
library.

The other side of this question is in deployment, and this is
where ColdFusion MX represents a major change. By rearchi-
tecting ColdFusion MX so that it can run on a Java server, we’re
enabling developers who are using ColdFusion to take advan-
tage of the performance and reliability of the J2EE platform.
For example, if you deploy your ColdFusion application on
IBM WebSphere, it will run just like any other application on
WebSphere. It can run in multiple instances; it can use the
ultrafast IBM virtual machine; and it can take advantage of
specialized WebSphere features such as load balancing, data-
base connection pooling, vertical scaling, and legacy integra-
tion.

To read more of this interview, go to www.sys-con.com/java.

by JDJ News Desk

• • •

L E T T E R S T O T H E E D I T O R

Java COM

78 NOVEMBER 2002

Inadequate Project Managers

Ienjoyed Jason Bell’s editorial “The 84%
Rule (Vol. 7, issue 9) and wanted to

add an important point.
In my experience,

planning a software
project is not a stat-
ic activity – it can’t
be done in advance
with any degree of
accuracy. Some
details can only be
discovered once a
project is in motion,

and traditional planning methods (and
tools) don’t account for that. It’s similar
to compiling code…some errors are
found at compile time, others at run-
time.

A PM’s typical response to risk is to
add more time to the estimate. But, as
you said, estimates are wildly inaccurate.
The better solution is to account for risk
(or “confidence”) as a separate item in a
project plan, rather than just lumping it
under the “time” column.

FYI: I gauge a project manager
by how well he or she understands
the time-cost-features triangle.
With one exception, every project
manager I’ve ever worked under
has been inadequate.

Chris Freyer
christopher.freyer@bcbsfl.com

I do agree with you that planning soft-
ware projects is a “nonstatic activity,” but
what I do find is that managers don’t
seem to realize that if a change is made to
a requirement it has to be managed. Most
changes do happen once a project is in
motion, I completely agree. As developers
and PMs, we are constantly being asked
for a deadline just so marketing can
do their thing and the sales guys
can do their thing. What usually
happens is that marketing and sales
then sell something completely dif-
ferent than what is on the spec!

One day we’ll get a manager
who understands that people only
work a certain amount of hours in
a day, and a PM who understands what
PMs are for. They have a knack for think-
ing they are programmers!

Jason Bell
jasonbell@sys-con.com

Bingo Card Skill Sets

In Alan Williamson’s editorial “Tale of
Two Camps” (Vol. 7, issue 9), the asser-

tion that “At the end of the day we are
software engineers, designed to solve
problems,” begs the question: Why does
the industry insist on bingo card skill

sets? All I’ve heard for the past
five years is how companies
want to check off certain skills,
and continue to ask for people
with improbable and impossi-
ble skills (Java, C++, Perl,
VB…and RPG!) Is the “indus-
try” changing from this bingo
card mentality (skills + years of
experience) to asking for pro-

fessionals with OO design and implemen-
tation skills who are language-agnostic?

Scott McMahan
scott@skwc.com

Simplicity and Productivity

I’ve been using this IDE since it was
released (“IntelliJ IDEA 3.0” by

Duane Fields [Vol. 7, issue 9]). I’ve
tried all of the big names: JBuilder,

Cafe, VisualAge, Forte,
etc., and this is by far the
best. It has the simplicity
of a basic text editor with the
productivity of a Java IDE. I
even use it to teach my Java
classes because it doesn’t “get
in the way” of learning Java.

Dave Ford
dford@smart-soft.com

The Clear Winner Is SWT

Icouldn’t agree more with Alan
Williamson’s editorial “Swing Is Swinging

Java out of the Desktop” (Vol. 7, issue 10).
While it may be possible for Swing gurus
who write Java bytecodes in their
sleep to create Swing-based pro-

grams that are both
reasonably fast and
have an “almost
native” look and feel,
SWT gives you all of
this for free.

Although others
will argue that it is
possible for talented Swing

gurus to create Swing applications with
good performance and a native look/feel
(and I wouldn’t dispute this), they miss the
point. At issue is not what a highly experi-
enced Swing architect can accomplish but
what your average C# programmer can do.

In this battle, SWT is the clear winner.

David Orme
daveo@asc-iseries.com

Think Objects

Iagree with Jacquie Barker(“Combating
the ‘Object Crisis’” [Vol. 7, issue 9]).

However, I wonder if there’s another fac-
tor. New Java technologies
appear to be springing up
all the time. I’m mostly a
core Java developer, but
stuff like EJB (before 2.0),
servlets, JSF, and struts,
don’t seem to be very
object-oriented. Maybe get-
ting those new Java devel-
opers to think objects will

be more difficult than you think.

Tony Weddle
tony@maestro.demon.co.uk

Real Problem – Wrong Argument

Jason Weiss, in his editorial “Is
Complexity Hurting Java?” (Vol. 7, issue

10), is attacking a real problem but his
arguments are completely wrong. The
page count of the J2EE spec doesn’t tell
you anything about the learning curve for
the average applications developer. For
the most part, the specs provide a formal

unambiguous definition of what
the contractual responsibilities
of an application server imple-
menter are. In fact, you can
learn JSP in a day. VB and
PowerBuilder are heavily based
on SQL right?

Counting acronyms doesn’t
prove anything. All you need to
know to use JDBC, for example,

can be said in about 100 lines of code
and explained in two hours. JNDI is
about as hard to learn as java.util.Map.

The real problem on the server side is
EJB. It’s just flawed. It doesn’t solve the
right problems and it’s unnecessarily
complicated and inflexible. Let’s just
throw it out and be done with it.

Alexander Jerusalem
ajeru@vknn.org

L
et

te
rs

J2
SE

H
om

e
J2

E
E

J2
M

E

79NOVEMBER 2002

Java COM

epgawt@terra.es

J2SE
H

om
e

J2E
E

J2M
E

AUTHOR BIO
Enrique Pérez Gil is the director of the e-business area for Virtual Desk SL, based in Madrid, Spain (www.virtualdesk.es). He has 12 years of
development experience, six of them developing Web-based Java projects for banking, logistic, and e-commerce companies. Enrique holds a
BS in computer science from Madrid Polytechnic University.

S P O T L I G H T O N O P E N S O U R C E

ASK: Making Server-Side
Development Easy WRITTEN BY ENRIQUE PÉREZ GIL

Ido believe the center of Java
development is the program-
mer who is creating object-ori-

ented Java code. But how do you
achieve this when developing Web
applications? In the Internet sce-
nario the client and server sides are
disconnected: the front end is
shown to the user miles away from
where the real code that’s reacting
to it is executed. Even worse, the
visual code is different from the
code that executes the logic. How
much time does a Java Web appli-
cation developer dedicate to
tasks that differ from real
application logic? Forty per-
cent? Thirty percent? And
what about maintenance?

ASK is a front-end applica-
tion server that provides the
necessary support for numer-
ous requests. This is achieved
with a server-side server’s
topology. Within this architec-
ture it’s possible to set up as
many ASK servers as you
need, indicating which appli-
cations every ASK server
should support, and also
which applications run in
which servers. All the architecture
is described in one XML file.

ASK is built on the premise that
the application logic should be
100% Java, 100% object-oriented,
and 0% HTTP/HTML. To achieve
that goal, ASK implements a Java
server-side graphical component
model that melts the client and
server sides. All the HTTP com-
plexities, like session management
and navigation, are internally
managed by the ASK front-end
application server, thus Web appli-
cation development is actually
visual Java components and events
handlers development.

The most typical problems that
I’ve seen in Web application proj-
ects have been those that are relat-
ed to team management trying to
fit the application aspect tasks
(designers, stylists) with the appli-
cation logic ones (Java developers).
It’s hard to mix these two worlds
with an efficient methodology.
Using ASK helps solve this prob-
lem. The development process is as
follows: Java developers develop
the application and spend 99% of
their time making it work (Visual

Logic, DDBB, EJBs), without wor-
rying about color, font, etc. Once
it’s ready, and that means really
working, the stylist team arrives to
set the skin. Since responsibilities
are clearly separated, communica-
tion between the teams is minimal,
reducing the overall development
and maintenance time.

Most Web applications need to
be executed in a secure, scalable,
performance-efficient, and, hope-
fully, low-cost environment. ASK
was developed from scratch taking
all that into consideration but
adding another requirement: sim-
plicity.

A recursive question I get asked
is: “What happens if the server
crashes?” The answer is: ASK is
applications fault-tolerant. It offers
an applications crash-and-recovery
service that’s plugged into those
servers where needed. Also, it’s not
active for all the applications; you
decide which type of application
should use it independently.

Performance is an issue, and
this has been checked from the
start of the development, condi-
tioning many low-level design

decisions. An ASK server is
a simple thing; it doesn’t
need a lot of resources or to
execute complex or heavy
processes to handle appli-
cations. It’s lightweight –
the ASK code is com-
pressed to 300KB. The
amount of time an ASK
server spends executing a
call to your application is
almost the same amount of
time it takes your code to
execute. You may have per-
formance problems if the
number of concurrent
requests increases, as in

any other situation, but then the
solution in ASK is simple: set up
another ASK server (with a low-
cost but powerful machine, if pos-
sible).

ASK is an open-source (lesser
GPL) tool that proposes a new,
simple, and powerful way to
develop Web applications, where
simplicity and openness are a
must.

Resources
• www.openode.org
• http://sourceforge.net/proj-

ects/openode
• http://enrique.blog-city.com

There are literally thousands of open-source proj-
ects in the works at the moment, many of them based
on very innovative and exciting technologies…many of
them not! We want to shine some light on the more
innovative and smaller projects – projects that don’t
necessarily have a large body or company behind them
to give them the exposure they deserve.

Spotlight on Open Source is brought to you by fel-
low developers. We want to hear about the projects that
you think are notable and perform a great service for
the world of Java. Please e-mail me with your sugges-
tions for future Spotlight features at alan@sys-
con.com.

Java COM

80 NOVEMBER 2002

Playing Four Square

C A R E E R O P P O R T U N I T I E S
J2

SE
H

om
e

J2
E

E
J2

M
E

jdjcolumn@objectfocus.com

AUTHOR BIOS
Bill Baloglu is a

principal at ObjectFocus
(www. ObjectFocus

.com), a Java staffing
firm in Silicon Valley. Bill

has extensive OO
experience and has

held software
development and

senior technical
management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing

industry executive and a
principal at ObjectFocus.
His prior position was at
Renaissance Worldwide,

where he held
several senior

management positions
in the firm’s Silicon Valley

operations.

But when you apply for a job that
looks like a perfect fit for your skills, you
get a rejection letter. Or even worse, it
seems as if your résumé was sucked into
a black hole and you never hear any-
thing back at all.

What’s going on, you wonder. Why
don’t these people realize how perfect I
am for this position?

Potential employers look at a résumé
in a way that’s fundamentally different
than you might expect. And a lot of it has
to do with the type of work – and the
kind of company – that’s listed on your
résumé.

To understand how people in the
industry perceive different types of engi-
neering experience, imagine a box made
up of four squares. From the top left,
number the squares clockwise, as 1, 2, 3,
and 4. These numbers have nothing to
do with seniority levels; they’re merely a
way to visualize four different types of
work (see Figure 1).

Boxes 1 and 4 represent the work
done at product companies. Boxes 2 and
3 represent the work done at IT organi-
zations. The engineers who work at level
1 build commercial applications that sit

on top of the core infrastructures built
by engineers at level 4.

When we refer to product compa-
nies, we’re talking about companies that
sell enterprise-wide products to other
companies. These include Oracle,
Siebel, Arriba, and BEA. Using Oracle as
an example, the level 4 engineers are the
ones who built the Oracle core platform.
The level 1 engineers build applications
that run on top of it.

Engineers who build commercial
applications must face a special set of
problems and challenges. Those who
have worked in this environment have
experience with building a product
that’s going to market.

Engineers who work at levels 2 and 3
work for IT organizations, doing similar
yet different kinds of work. Examples of
IT organizations include the IT divisions
of large companies such as Charles
Schwab, E*TRADE, or DHL.

The engineers at level 2 build appli-
cations, for the company’s internal use,
that sit on top of the core infrastructure
built by engineers at level 3. While these
may be powerful, complex systems and
applications, there’s a fundamental dif-
ference between this kind of work and
building a product that’s going out the
door.

In the eyes of those within the indus-
try, it’s like looking at two automobile
engineers who are both building Fords.
One engineer has been building racing
cars, the other has been building con-
sumer cars. That’s not to say that one
type of work is better than the other, but
each product demands different skills
and experience from the engineer who
builds it.

By the same token, an actor who’s
had a long career in situation comedies
is going to have a hard time selling him-
self to someone who’s casting a produc-

tion of Hamlet. He might be a great
Shakespearean actor, but it’s going to
take some special strategies to sell him-
self for the role.

Many people fit into more than one
of these imaginary boxes, and there’s no
reason why a skilled engineer couldn’t
make the transition from one type of
work to another. It’s a matter of percep-
tion on the part of potential employers,
and how well you can address those per-
ceptions when applying for the job.

The first step is to realize that based
on your résumé, you are being perceived
not only by your skills, but by the type of
work you’ve done in the past. The sec-
ond step is to specifically address poten-
tial concerns in a cover letter or within
the résumé itself.

Spamming out the same résumé for
many different types of positions is the
most common mistake made by job-
hunting engineers. It takes more time to
tailor your résumé and cover letter to
each position, but in our experience, it’s
the only way to catch the serious atten-
tion of hiring managers.

An unfortunate fact of life in the hir-
ing world is that most résumés aren’t
carefully read, they’re scanned. Since
we’re currently in a buyer’s market, it’s
even more critical that you sell yourself
carefully and thoughtfully, taking as
many issues into account as possible.

By recognizing in which of these four
squares a hiring manager might per-
ceive you, you stand a much better
chance of positioning yourself to cross
over into one of the other squares.

It’s ultimately about depth and
breadth of experience. Once you’ve built
racing cars, Aerostars, and Escorts, you
should be able to get any job building
any kind of car you want.

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

You’re a senior Java engineer who’s been working with J2EE on enterprise systems
software and applications.You’ve got a résumé that reads like a who’s who and what’s
what of current technologies.

FIGURE 1 Four areas of engineering

How hiring managers view engineers

What’s in the next
issue of JDJ ?

PLUG IN YOUR COMMAND PROCESSOR
NOW AND START SAVING MONEY!

The Command Processor tool takes a Java object
and creates a command-line interface to its public
methods. These public methods are essentially your
Application Programming Interface (API). During the
course of this article we’ll get a good look at the
java.lang.reflect package, as well as kick the tires on
the Regular Expression package included in the 1.4
JDK.

SEEING IS BELIEVING WITH JAVA3D
Java3D is no newcomer to the Java API world;

however, it has suffered from slow acceptance due to
the general resistance to client-side Java. Now that
machines are faster, hardware 3D accelerators are a
dime a dozen, and newer JVMs rival native code,
client-side Java and 3D graphics are finally making
headway.

JREPORT BY JINFONET
Enterprise reporting products create output

reports from databases and other data sources (such
as XML documents). The enterprise reporting market
can be divided into two basic categories – query and
reporting. Query tools are generally geared toward
end users and are designed for interactive analysis
and drill-down (from summary data into detailed
reports). Enterprise reports such as JReport output
data into report formats such as hard-copy printouts
and HTML pages.

ROUGH SEAS, SINKING SHIPS,
AND LIFEBOATS

As 2002 draws to a close, many of us find our-
selves reflecting on the past year. There are many
things we can be thankful for, primarily that this year
wasn’t nearly as cataclysmic as last year. Unless, of
course, you happen to be one of those CEOs who
was busted big time.

Lucene is an open-source search framework from
Apache’s Jakarta project. This article shows you how to use

Lucene to build a search solution for your application. Although
the examples will be geared toward an e-commerce applica-
tion, Lucene is flexible enough to be used on any application,

whether it’s Web, desktop, or CD-ROM based.

SEARCH-ENABLE
YOUR APPLICATION

WITH LUCENE

FPO

ADVERTISERINDEX

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high edi-
torial quality of Java Developer’s Journal. All advertising is subject to approval by the Publisher. The Publisher assumes no liability for any
costs or damages incurred if for any reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any costs
or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is fully
responsible for all financial liability and terms of the contract executed by the agents or agencies who are acting on behalf of the Advertiser.
Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions other than those set forth
in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content
of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discretion
includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to adver-
tisements must be made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

AccelTree www.acceltree.com 30

Altova www.altova.com 27

AltoWeb www.altoweb.com 55

Apple Computer, Inc. www.apple.com/xserve 4-5

BEA www.dev2dev.bea.com/useworkshop 9

Borland Software Corp. www.borland.com/new/javasolutions/92122.html 41

Bowstreet www.bowstreet.com/easy 17

Crystal Decisions www.crystaldecisions.com/cr9/002/ 888-333-6007 35

Engenuity Technologies www.jloox.com 800-684-5669 45

ESRI www.esri.com/arcims 888-289-5084 57

HiT Software www.hitsw.com 408-345-4001 61

IBM ibm.com/developerWorks/linux/cd 11

IBM ibm.com/websphere/ebaydev 33

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 53

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

iSavvix www.isavvix.com 1-866-iSavvix 65

JBoss Group www.jboss.org 28

Jinfonet www.jinfonet.com/jdj11.htm 301-838-5560 31

Macromedia www.macromedia.com/go/jrun4jdj 37

Motorola www.motorola.com/developers/wireless 6

/n software inc. www.nsoftware.com 43

n-ary www.javaSOS.com 67

New Atlanta Communications www.newatlanta.com 47

Northwoods Software www.nwoods.com/go/ 800-434-9820 68

Oracle Corp. oracle.com/javafaster 800-633-0546 21

Our World Live www.ourworldlive.com Cover III

Parasoft Corporation www.parasoft.com/jdj11 888-305-0041 39

Precise Software www.precise.com/jdj 800-310-4777 29

QUALCOMM Incorporated www.qualcomm.com/brew 49, 59

Rational Software www.rational.com/offer/javacd2 13

Sitraka www.sitraka.com/jclass/jdj 800-663-4723 25

Sitraka www.sitraka.com/jprobe/jdj 800-663-4723 51

Sitraka www.sitraka.com/performasure/jdj 800-663-4723 Cover IV

Sonic Software www.sonicsoftware.com/jdj 800-989-3773 Cover II

SpiritSoft www.spiritsoft.com/climber 23

SYS-CON Media www.sys-con.com 69

SYS-CON Subscription Offer www.sys-con.com/suboffer.cfm 71

WebAppCabaret www.webappcabaret.com/jdj2.jsp 38

Web Services Edge 2003 www.sys-con.com 201-802-3069 73

Zero G www.zerog.com 415-512-7771 3

ADVERTISER URL PHONE PAGE

Java COM

100 NOVEMBER 2002

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

Jav
a D

ude
s

J2
SE

H
om

e
J2

E
E

J2
M

E
C U B I S T T H R E A D S

Since I’ll be presenting sessions
throughout the week, I should really be
reviewing them to make sure I have my
message straight or at least make sure I
don’t goof up too badly. I’m still trying
to live down that episode when I credit-
ed Sir Francis Bacon, of all people, with
the invention of Java. (Sorry, Dr.
Gosling!) It’s just that kind of faux pas
that can affect a person’s technical
credibility!

Actually, I have the sessions down
pretty well, I guess, though I won’t
know until I’m standing in front of the
audience. It’s rarely the case that any
Java presentation can remain un-
changed from conference to confer-
ence; so many things change so quickly
that bringing the information up to
date is always a concern. While I’ll be
talking about our iSeries JVM, another
project I work on called Remote AWT,
and some JNI topics, I think the most
exciting subject is the new content in
version 1.4 of Java: the new I/O, asser-
tions, regular expressions, and logging,
to name a few – very cool new stuff in
an already cool language.

I arrived in Denver last night, and it
was my only “free” night here, so natu-
rally (instead of reviewing my sessions
or getting a good night’s sleep) I had to
seek out some local foosball. I hap-
pened to find a wonderful Web site

dealing exclusively with Colorado foos-
ball that listed a half-dozen or so likely
foosing venues in downtown Denver.
After a nice dinner (on the company,
naturally) I took my little hand-
scrawled map and struck out on my
own to find just the right table.

Since my foosball Thread last year
(“Ahh, Youth...” [JDJ, Vol. 6, issue 12]),
I’ve been getting a bit more serious
about the game. I have my own table
now and have been practicing on a fair-
ly regular basis, so naturally I like to
think I’m getting pretty good. After all,
my foos team was runner-up at the
site-wide foosball tournament at work,
so I figured I must be nearly unstop-
pable.

Oh, I knew I might run into some
talented foosers, but I fully expected to
be among the better players. I even
envisioned returning to my hotel a
wealthy foos king, having been show-
ered with the undying admiration of
the entire Denver foosing community.
“Look out Denver foosers!” I thought.
“I’ll just go downtown and give these
local foosers a taste of truly sophisticat-
ed Minnesota foosball.”

Yeah, right. Either (1) there are a lot of
talented foosers in this town and a few of
them happened to stop by the table at
which I chose to play, or (2) there are
only a few talented foosers and they all

happened to show up. Either way, I’ll be
looking for the shards of my shattered
foosball ego for the rest of the week.

Many of my colleagues at work are
taking to the game with a lot of zeal.
Last year, I was on the team that won
the site-wide foosball tournament,
albeit barely, but there frankly wasn’t a
lot of competition. Only a couple of
teams were in any position to seriously
compete for the title. This year, it was
apparent that lots of people have been
practicing; any number of teams could
have taken the coveted foosball title,
complete with T-shirt and all-impor-
tant bragging rights.

Of course, I’ve been doing some foos-
ing “on the town” back home, as well, but
the results have been mixed. (The eter-
nal question: Is it “success” to beat some-
one so badly that they throw a cue ball at
you? Yes, it really happened.) With the
onset of Old Man Winter in Minnesota,
I’m hoping the extracurricular foosing
opportunities increase (though I might
have to borrow my son’s football helmet
if we go back to that place).

What if programming language
dominance were as simple as foosball
dominance? “I happen to know a little
language called Java that’ll kick….”
(Just look out for flying cue balls!)

blair@blairwyman.com

WRITTEN BY
BLAIR WYMAN

I’m at the COMMON computer conference this week in
Denver, and writing a Cubist Thread is about the last thing I
should be doing at the moment.

Choose to Foos

83NOVEMBER 2002

Java COM

our world live
ourworldlive.com

Java COM

84 NOVEMBER 2002

sitraka
www.sitraka.com

